Navigation Links
Neurons find their place in the developing nervous system with the help of a sticky molecule

The brain, that exquisite network of billions of communicating cells, starts to take form with the genesis of nerve cells. Most newborn nerve cells, also called neurons, must travel from their birthplace to the position they will occupy in the adult brain. Researchers at the Salk Institute for Biological Studies have identified a molecule expressed on the surface of certain migrating neurons that helps them find their correct position along on the way.

Decreasing levels of that protein, an adhesion molecule called MDGA1, prevents neurons that normally make this protein from assuming their proper position, resulting in brain malformation, researchers report in the April 26th issue of the Journal of Neuroscience.

As Dennis D. M. O'Leary, Ph.D., senior author of the study and a Professor in the Molecular Neurobiology Laboratory put it, "proper neuronal positioning is essential for development of appropriate wiring, which is in turn critical for establishing a normal, functioning nervous system."

Neurons migrate throughout the brain, but migration is particularly important for development of part of the brain known as the cerebral cortex. The cortex sits like a skullcap over the rest of the brain and is responsible for sensory perception, higher-level reasoning, and, in humans, language. In mammals, the largest and evolutionarily newest part of the cortex, the neocortex, is recognized anatomically by its six horizontal layers.

The neocortex develops outward from an underlying zone of cells. From that zone, crawling neurons migrate radially out toward the surface or "superficial" part of the developing cortex, giving rise to a laminar structure. Neurons forming layers 2 and 3, the focus of the current study, are born last and so must elbow their way through cells lying in earlier formed layers to reach what will become the outermost layers. Without MDGA1, these neurons begin to migrate but get stuck before they reach their normal destina tion.

The MDGA1 gene was cloned and characterized first in rat by O'Leary and two former postdoctoral fellows, E. David Litwack, Ph.D. and Matthias Gesemann, Ph.D. They showed that MDGA1 is a cell adhesion molecule ?a protein enabling cells to attach to other surfaces, something that they must do either to move or sit still and elaborate connections. They also showed that MDGA1 is expressed on subpopulations of migrating neurons throughout the developing nervous system, including layer 2/3 neurons in the neocortex, suggesting that MDGA1 may actually be required for migration.

In the current study, O'Leary and Akihide Takeuchi, M.D., Ph.D., a postdoctoral fellow and the study's first author, tested this hypothesis. They first showed that layer 2/3 neurons make MDGA1 protein as they migrate to their destination. Then, utilizing a cutting-edge molecular technique called RNA interference, the Salk researchers silenced the MDGA1 gene. To do this, they painstakingly performed in utero surgery on embryonic mice ?injecting an interfering RNA molecule into the lateral ventricle, a fluid-filled space next to the neocortex. Application of an electrical current forced the RNA into neural progenitor cells, and it was subsequently inherited by their neuronal progeny that form layer 2/3 and blocked their ability to make MDGA1 protein.

When Takeuchi and O'Leary examined the neocortex a few days later when the mice were born, they discovered that nearly all neurons containing the interfering RNA were stalled in aberrant deeper locations, indicating that loss of MDGA1 protein had stymied their attempt to travel the full distance to layer 2/3 and supporting the original hypothesis. The goal now is to determine how MDGA1 controls neuronal migration and what the long-term consequences are of its loss.

Impaired function of neuronal adhesion molecules has been previously linked to neurological defects in humans. A cell adhesion molecule known as L1 has been shown to affect cell migration and positioning in other parts of the nervous system. Numerous mutations in the human L1 gene have been uncovered; individuals with these mutations often show severe defects in neuronal positioning and connectivity, which are clinically manifested in conditions such as hydrocephalus, mental retardation and spastic paraplegia.

Whether mutations in MDGA1 lead to brain disorders remains to be seen. "Much work needs to be done, and the appropriate tools need to be developed to do this work," said O'Leary, "but we feel that these studies will eventually provide insight into neurological disorders that have their basis in malpositioning of neurons."


Source:Salk Institute

Related biology news :

1. Neurons generated in the adult brain learn to respond to novel stimuli
2. Neurons grown from embryonic stem cells restore function in paralyzed rats
3. Priming embryonic stem cells to fulfill their promise
4. Protein offers way to stop microscopic parasites in their tracks
5. Flocking together: Study shows how animal groups find their way
6. Where bacteria get their genes
7. Chickadees can help humans get their bearings
8. Bacteria use hosts immune response to their competitive advantage
9. Structures of marine toxins provide insight into their effectiveness as cancer drugs
10. Beauty queens urge girls not to sacrifice their bones
11. Researchers learn how blood vessel cells cope with their pressure-packed job
Post Your Comments:

(Date:6/22/2016)... LOS ANGELES , June 22, 2016 ... of identity management and verification solutions, has ... cutting edge software solutions for Visitor Management, ... ® provides products that add functional ... The partnership provides corporations and venues with ...
(Date:6/21/2016)... British Columbia , June 21, 2016 /PRNewswire/ ... appointed to the new role of principal product ... been named the director of customer development. Both ... NuData,s chief technical officer. The moves reflect NuData,s ... teams in response to high customer demand and ...
(Date:6/16/2016)... June 16, 2016 The ... expected to reach USD 1.83 billion by 2024, ... Research, Inc. Technological proliferation and increasing demand in ... expected to drive the market growth. ... The development of advanced multimodal techniques for ...
Breaking Biology News(10 mins):
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... ... ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical journal articles ... findings are the subject of a new article on the Surviving Mesothelioma website. ... blood, lung fluid or tissue of mesothelioma patients that can help point doctors to ...
(Date:6/23/2016)... June 23, 2016 A person commits a crime, ... scene to track the criminal down. An outbreak ... and Drug Administration (FDA) uses DNA evidence to track down ... Sound far-fetched? It,s not. The FDA has increasingly used ... investigations of foodborne illnesses. Put as simply as possible, whole ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , a ... $1 million in debt financing from Silicon Valley Bank ... automation and to advance its drug development efforts, as ... facility. "SVB has been an incredible strategic ... services a traditional bank would provide," said Dr. ...
Breaking Biology Technology: