Navigation Links
Navigating the brain for sense of direction as paradigm for higher cognitive functions

No matter how healthy a life one leads, no person has managed to live much longer than a century. Even though the advances of the modern age may have extended the average human life span, it is clear there are genetic limits to longevity. One prominent theory of aging lays the blame on the accumulation of damage done to DNA and proteins by “free radicals,?highly reactive molecules produced by the metabolic activity of mitochondria.

This damage is expected to reduce gene expression by damaging the DNA in which genes are encoded, and so the theory predicts that the most metabolically active tissues should show the greatest age-related reduction in gene expression. In this issue, Michael Eisen and colleagues show that the human brain follows this pattern. A similar pattern—which, surprisingly, involves different genes—is found in the brain of the aging chimpanzee.

The authors compared results from three separate studies of age-related gene expression, each done on the same type of DNA microarray and each comparing brain regions in young versus old adult humans. In four different regions of the cortex (the brain region responsible for higher functions such as thinking), they found a similar pattern of age-related change, characterized by changes in expression of hundreds of genes. In contrast, expression in one non-cortical region, the cerebellum (whose principal functions include movement), was largely unchanged with age. In addition to confirming a prediction of the free-radical theory of aging (namely, that the more metabolically active cortex should have a greater reduction in gene activity), this is the first demonstration that age-related gene expression patterns can differ in different cells of a single organism.

The authors found a similar difference in age-related patterns in the brain of the chimpanzee, with many genes down-regulated in the cortex that remained unchanged in the cerebellum. However, the set of affected cortical genes was entirely different between humans and chimps, whose lineages diverged about 5 million years ago. The explanation for this difference is unknown, but the finding highlights the fact that significant changes in gene expression patterns, and thus changes in many effects of the aging process, can accumulate over relatively short stretches of evolutionary time.

These results raise a number of questions about age-related gene expression changes, including whether metabolically active non-brain tissues display similar patterns of changes, and whether the divergence between human and chimp patterns was the direct result of selection, or was an inevitable consequence of some other difference in brain evolution. The patterns seen in this study also provide a starting point for understanding the network of genetic changes in aging, and may even reveal targets for treatment of neurodegenerative diseases.


'"/>

Source:American Physiological Society


Related biology news :

1. Navigating an integrated yeast network
2. Controversial drug shown to act on brain protein to cut alcohol use
3. Mouse brain cells rapidly recover after Alzheimers plaques are cleared
4. Mouse brain tumors mimic those in human genetic disorder
5. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
6. First atlas of key brain genes could speed research on cancer, neurological diseases
7. NYU study reveals how brains immune system fights viral encephalitis
8. Stem cells from brain transformed to produce insulin at Stanford
9. Birds brains reveal source of songs
10. Loves all in the brain: fMRI study shows strong, lateralized reward, not sex, drive
11. Revolutionary nanotechnology illuminates brain cells at work
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/13/2017)... Former 9/11 Commission border counsel and Special Counsel to ... of Identity Strategy Partners, LLP, today releases the following ... Protecting the Nation From Foreign Terrorist Entry Into the ... Trump,s ,Travel Ban, Executive Order gains more notoriety and ... ban, it is important that our national discourse regain ...
(Date:2/8/2017)... (NASDAQ: AWRE ), a leading supplier of biometrics ... and year ended December 31, 2016. Revenue ... to $6.9 million in the same quarter last year. Operating ... compared to $2.6 million in the fourth quarter of 2015. ... million, or $0.02 per diluted share, which compares to $1.8 ...
(Date:2/7/2017)... Minn. , Feb. 7, 2017   MedNet ... supports the entire spectrum of clinical research, is pleased ... iMedNet , its innovative, highly flexible and award ... iMedNet customers. iMedNet is a proven ... provides Electronic Data Capture (EDC), but also delivers an ...
Breaking Biology News(10 mins):
(Date:2/22/2017)... Fort Washington, PA (PRWEB) , ... ... ... The Omnia-Prova Education Collaborative (TOPEC), the leading medical education provider of ... Accreditation with Commendation by the Accreditation Council for Continuing Medical Education (ACCME). ...
(Date:2/22/2017)... ... February 22, 2017 , ... LabRoots , the leading provider of ... world, is pleased to announce the launch of a new scholarship for young scientists ... , This merit-based scholarship is open to all high school seniors, 17 years or ...
(Date:2/22/2017)... 22, 2017 Aethlon Medical, Inc. (Nasdaq: ... study that validated the ability of the Aethlon Hemopurifier® ... increased mortality in immune-suppressed sepsis patients and also contribute ... The objective of the study was to validate the ... virus (EBV) and Herpes Simplex virus 1 (HSV1) by ...
(Date:2/22/2017)... PHOENIX and SAN DIEGO ... Technology Holdings (the "Company") (OTCQB:CELZ) announced today expansion ... universal donor stem cell product through establishment of ... initiated research activities at the San Diego BioLabs ... Companies, Boehringer Ingelheim, Novartis, and Sanofi. ...
Breaking Biology Technology: