Navigation Links
Navigating an integrated yeast network

Scientists have for the first time mapped multiple complex biological interactions in a yeast cell in a simple graphical form, enhancing our understanding of how the networks of interaction by which components of a cell influence one another. New research published in the Open Access journal Journal of Biology shows that such maps can also reveal cryptic interactions and enable accurate predictions about interactions that haven't been observed experimentally.

A living cell contains thousands of proteins, genes and macromolecules, enmeshed in complex webs of relationships involving direct or indirect contact. At the simplest level, some recurring patterns of interconnections occur more frequently than expected in randomized networks, and these are called 'network motifs'. Lan Zhang from Harvard Medical School, USA, and colleagues found that the concept of 'network themes' ?recurring complex patterns that encompass multiple occurrences of network motifs ?allows the building of 'thematic maps' of interactions between macromolecules that can be tied to biological phenomena and may help represent more fundamental network design principles than do simple motifs.

Zhang et al. integrated five different types of biological relationships found in the yeast Saccharomyces cerevisae: protein-protein interactions, genetic interactions, transcriptional regulation, sequence homology and expression correlation. The authors are the first to integrate so many types of data to search for network motifs. The authors conclude that most network motifs found in the integrated S. cerevisae network can be understood in terms of just a few network themes, associated with specific biological phenomena.

Their results also show that thematic maps can highlight previously unknown relationships between functional modules in a cell. In addition, they can be used to predict interactions that are hard to identify experimentally, or to predict the function of genes involved in s pecific themes.

According to Markus Herrgard and Bernhard Palsson of University of California, San Diego, the authors' approach can be readily extended to different types of cellular networks. "[T]he thousands of physical and functional interactions that exist within all cells can begin to be untangled to provide [the] basis for detailed network reconstruction and to elucidate fundamental organizational principles of biological networks."

This press release is based on the following article:

Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network Lan V Zhang, Oliver D King, Sharyl L Wong, Debra S Goldberg, Amy HY Tong, Guillaume Lesage, Brenda Andrews, Howard Bussey, Charles Boone and Frederick P Roth

Journal of Biology 2005, 4:6 (1 June 2005).

This article is available free of charge


'"/>

Source:BioMed Central


Related biology news :

1. Navigating the brain for sense of direction as paradigm for higher cognitive functions
2. Examination of internal wiring of yeast, worm, and fly reveals conserved circuits
3. After the yeast is gone bacteria continue to develop flavor of sparkling wine
4. GlycoFi announces the first production of antibodies with human glycosylation in yeast
5. From a lowly yeast, researchers divine a clue to human disease
6. GlycoFi and Dartmouth report full humanization of yeast glycosylation pathway in Science
7. Engineered yeast speeds ethanol production
8. Primitive yeast yields secrets of human cholesterol and drug metabolism
9. Hives ferment a yeasty brew, attract beetle pest
10. New NIAID grants strengthen national biodefense and emerging infectious diseases research network
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/5/2017)... NEW YORK , April 5, 2017 ... security, is announcing that the server component of the ... is known for providing the end-to-end security architecture that ... customers. HYPR has already secured over 15 ... system makers including manufacturers of connected home product suites ...
(Date:3/30/2017)... , March 30, 2017 The research ... system for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D ... a new realm of speed and accuracy for use in identification, ... an affordable cost. ... ...
(Date:3/24/2017)... The Controller General of Immigration from Maldives Mr. Mohamed ... received the prestigious international IAIR Award for the most innovative high security ... ... Maldives Immigration Controller General, ... picture on the right) have received the IAIR award for the "Most ...
Breaking Biology News(10 mins):
(Date:4/21/2017)... ... 21, 2017 , ... Having worked on the design of the innovative ... it to top lab design architects from around the country at the Lab Design ... Design and Engineering Greg Casey will be at the show, where they will highlight ...
(Date:4/21/2017)... ... April 21, 2017 , ... Frederick Innovative Technology Center, ... emerging technology-based businesses, recently earned a $77,518 grant from the Rural Maryland Council ... 2004, FITCI is Frederick’s first incubator. A non-profit corporation, FITCI is a public-private ...
(Date:4/20/2017)... ... April 20, 2017 , ... Husson University ... research community’s growing body of knowledge during its Eighth Annual Research and ... the adjacent Darling Atrium. During the event, undergraduates, graduate students, and faculty members ...
(Date:4/20/2017)... ... April 20, 2017 , ... ... unique intellectual property (IP) sharing and commercialization model. , The Center for Advancing ... main component of this effort is bringing the IP to the attention of ...
Breaking Biology Technology: