Navigation Links
Navigable nanotransport

To accurately transport pharmaceutical agents to their specific target organs or cell types, you need a good carrier: nanoscopic capsules with surface elements that can "recognize" the target in question could do the trick.

To date, all methods for the production of such tiny capsules require preorganized structures or "molds" to shape hollow spheres and most methods require a lengthy, tedious synthetic or purification procedure. Korean researchers led by Kimoon Kim have now developed a very simple novel approach for the direct production of polymeric nanocapsules. As described in the journal Angewandte Chemie, this method is generally applicable to any monomers as long as they have a flat core and multiple polymerizable groups at the periphery. Additionally, if building block are chosen that are able to bind specific (bio)molecules very tightly, the surface of the capsule can be easily decorated with species that are recognized by cells, showing the transporter the way to reach its goal, such as a tumor cell.

To demonstrate the power of their new concept, Kim and his team chose rigid, disk-shaped monomers equipped with a ring of special molecular "hooks" that can be activated by UV light. When a solution containing these disks is irradiated, the hooks grab on to each other, linking the disks into little, two-dimensional "patches" that in turn hook on to other patches. Once they reach a certain size, the patches bend around and close off to form hollow spheres, which can then be filled with guest molecules. The size of the spheres is very uniform and depends largely on the solvent in which the linking reaction takes place. The researchers used this method to produce capsules with diameters ranging from 50 to 600 nm.

The little disks used in this process deserve special consideration: Kim and his colleagues chose to use curcurbiturils. These disk-shaped molecules have a cavity at their center. As their shape resembles a hollowed-out pumpkin , this class of compounds was named after the plant genus of pumpkins, the cucurbitaceae. When the mini-pumpkins are linked together, they form an empty sphere with many tiny cavities on its surface. These "pockets" can be filled with certain nitrogen-containing biomolecules, such as spermine, in a very stable fashion.

The Korean researchers coupled spermine to the vitamin folic acid and packed these hybrid molecules into the capsule's pockets. This gave them capsules with a surface covered with folic acid molecules. What for? Many tumors have a significantly increased number of folic acid receptors on the surfaces of their cells. The folic acid on the capsules docks into these sites and is brought into the interior of the cell. Here, the contents of the capsule, such as an antitumor drug or contrast agent, can be released to selectively attack the tumor or to make an unambiguous diagnosis.


'"/>

Source:John Wiley & Sons, Inc.


Related biology news :

1. Major new UNC-based drinking water study suggests pregnancy fears may be overstated
2. Major breakthrough in the treatment of cancers and infectious diseases
3. Major advance made on DNA structure
4. Major WHO study concludes calcium supplements can reduce complications during pregnancy
5. Major obesity gene is lost in the shuffle
6. Major initiative proposed to address amphibian crisis
7. Major cancer study aims to identify protein markers for early-stage disease
8. Major link in brain-obesity puzzle found
9. Bioartificial kidney under study at MCG
10. W.M. Keck Foundation funds study of friendly microbes
11. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/19/2016)... , UAE, April 20, 2016 ... be implemented as a compact web-based "all-in-one" system solution ... the biometric fingerprint reader or the door interface with ... of modern access control systems. The minimal dimensions of ... ID readers into the building installations offer considerable freedom ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
(Date:3/31/2016)... March 31, 2016  Genomics firm Nabsys has completed ... Barrett Bready , M.D., who returned to the ... original technical leadership team, including Chief Technology Officer, ... Development, Steve Nurnberg and Vice President of Software and ... company. Dr. Bready served as CEO of ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young ... cancer. Members of the Class of 2016 were selected from a pool of ... More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... In a new ... in Denmark detail how a patient who developed lymphedema after being treated for breast ... results could change the paradigm for dealing with this debilitating, frequent side effect of ...
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
Breaking Biology Technology: