Navigation Links
Navigable nanotransport

To accurately transport pharmaceutical agents to their specific target organs or cell types, you need a good carrier: nanoscopic capsules with surface elements that can "recognize" the target in question could do the trick.

To date, all methods for the production of such tiny capsules require preorganized structures or "molds" to shape hollow spheres and most methods require a lengthy, tedious synthetic or purification procedure. Korean researchers led by Kimoon Kim have now developed a very simple novel approach for the direct production of polymeric nanocapsules. As described in the journal Angewandte Chemie, this method is generally applicable to any monomers as long as they have a flat core and multiple polymerizable groups at the periphery. Additionally, if building block are chosen that are able to bind specific (bio)molecules very tightly, the surface of the capsule can be easily decorated with species that are recognized by cells, showing the transporter the way to reach its goal, such as a tumor cell.

To demonstrate the power of their new concept, Kim and his team chose rigid, disk-shaped monomers equipped with a ring of special molecular "hooks" that can be activated by UV light. When a solution containing these disks is irradiated, the hooks grab on to each other, linking the disks into little, two-dimensional "patches" that in turn hook on to other patches. Once they reach a certain size, the patches bend around and close off to form hollow spheres, which can then be filled with guest molecules. The size of the spheres is very uniform and depends largely on the solvent in which the linking reaction takes place. The researchers used this method to produce capsules with diameters ranging from 50 to 600 nm.

The little disks used in this process deserve special consideration: Kim and his colleagues chose to use curcurbiturils. These disk-shaped molecules have a cavity at their center. As their shape resembles a hollowed-out pumpkin , this class of compounds was named after the plant genus of pumpkins, the cucurbitaceae. When the mini-pumpkins are linked together, they form an empty sphere with many tiny cavities on its surface. These "pockets" can be filled with certain nitrogen-containing biomolecules, such as spermine, in a very stable fashion.

The Korean researchers coupled spermine to the vitamin folic acid and packed these hybrid molecules into the capsule's pockets. This gave them capsules with a surface covered with folic acid molecules. What for? Many tumors have a significantly increased number of folic acid receptors on the surfaces of their cells. The folic acid on the capsules docks into these sites and is brought into the interior of the cell. Here, the contents of the capsule, such as an antitumor drug or contrast agent, can be released to selectively attack the tumor or to make an unambiguous diagnosis.


'"/>

Source:John Wiley & Sons, Inc.


Related biology news :

1. Major new UNC-based drinking water study suggests pregnancy fears may be overstated
2. Major breakthrough in the treatment of cancers and infectious diseases
3. Major advance made on DNA structure
4. Major WHO study concludes calcium supplements can reduce complications during pregnancy
5. Major obesity gene is lost in the shuffle
6. Major initiative proposed to address amphibian crisis
7. Major cancer study aims to identify protein markers for early-stage disease
8. Major link in brain-obesity puzzle found
9. Bioartificial kidney under study at MCG
10. W.M. Keck Foundation funds study of friendly microbes
11. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... to expand at a CAGR of 25.76% during the ... is the primary factor for the growth of the ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem ... technology, application, and geography. The stem cell market of ...
(Date:4/3/2017)...  Data captured by IsoCode, IsoPlexis Corporation,s ... statistically significant association between the potency of ... objective response of cancer patients post-treatment. The ... cancer patients will respond to CAR-T cell ... to improve both pre-infusion potency testing and cell ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:7/20/2017)... (PRWEB) , ... July 20, 2017 , ... ... on health-related quality of life, today announced its full advisory board. The board ... announced the promotion of James Crooks, PhD, former VP of Engineering, to Chief ...
(Date:7/20/2017)... ... July 20, 2017 , ... Corporate Directors Forum is recognizing six San Diego ... the Year Awards. , The awards will be presented Thursday, September 7th, from 6 ... directors who have made significantly positive contributions in the boardrooms of some of our ...
(Date:7/18/2017)... Switzerland (PRWEB) , ... July 18, 2017 , ... ... R&D, today announced that Merck, a leading science and technology company, has implemented ... innovative therapeutics for the therapeutic areas of Oncology, Immunology, and Neurodegenerative Diseases. , ...
(Date:7/18/2017)... ... 18, 2017 , ... Recently recognized by CIO Magazine as ... migration of its flagship cloud-based product Planet Life Cycle – a robust work ... system that merges strategic and financial planning with execution. The solution is leveraged ...
Breaking Biology Technology: