Navigation Links
Natural antibiotics yield secrets to atom-level imaging technique

Frog skin and human lungs hold secrets to developing new antibiotics, and a technique called solid-state NMR spectroscopy is a key to unlocking those secrets.

That's the view of University of Michigan researcher Ayyalusamy Ramamoorthy, who will discuss his group's progress toward that goal March 3 at the annual meeting of the Biophysical Society in Baltimore, Md.

Ramamoorthy's research group is using solid-state NMR to explore the germ-killing properties of natural antibiotics called antimicrobial peptides (AMPs), which are produced by virtually all animals, from insects to frogs to humans. AMPs are the immune system's early line of defense, battling microbes at the first places they try to penetrate: skin, mucous membranes and other surfaces. They're copiously produced in injured or infected frog skin, for instance, and the linings of the human respiratory and gastrointestinal tracts also crank out the short proteins in response to invading pathogens.

In addition to fighting bacteria, AMPs attack viruses, fungi and even cancer cells, so drugs designed to mimic them could have widespread medical applications, said Ramamoorthy, who is an associate professor of chemistry and an associate research scientist in the Biophysics Research Division.

While researchers have identified hundreds of AMPs in recent years, they're still puzzling over exactly how the peptides wipe out bacteria and other microbes. Unlike conventional antibiotics, which typically inhibit specific bacterial proteins, AMPs get downright physical with invaders, punching holes into their membranes. But they're selectively pugnacious, targeting microbes but leaving healthy host cells alone.

"They're like smart bombs," Ramamoorthy said. "We'd like to exploit their properties to design super-smart bombs, but before we can do that, we need to understand how these AMP smart bombs interact with membranes to destroy bacteria. We need to know how they're shaped befo re, during and after the process of attaching to bacteria and how they attach."

Solid-state NMR spectroscopy is an ideal tool for answering such questions because it provides atom-level details of the molecule's structure in the complex and challenging cell membrane environment, Ramamoorthy said. "Just as an MRI produces a detailed image of our internal organs, solid-state NMR spectroscopy is used to construct a detailed image of a peptide or protein and to reveal how it sits in the cell membrane," providing clues for modifications that might make synthetic AMPs even more effective in overcoming ever-increasing bacterial resistance. For instance, rearranging parts of the molecule might make it fit into the membrane better, resulting in greater effectiveness with smaller amounts of AMP.

"Our overall mission is to use the kind of basic physical data we obtain from solid-state NMR spectroscopy to help interpret biological functions," Ramamoorthy said. The work is highly interdisciplinary, involving not only Ramamoorthy's lab and several other groups in the Chemistry Department, but also researchers from the College of Engineering, the School of Dentistry, the Medical School and the Biophysics Research Division, as well as collaborators in Canada, Japan, India and the U.S. pharmaceutical companies Genaera Corporation and Eli Lilly and Company. Ramamoorthy was awarded support from the National Institutes of Health and the National Science Foundation, through an NSF Faculty Early Career Development Award.

A leader in this area of research, he has organized two major international symposia on the field at the University of Michigan, edited a special issue in the journal BBA-Biomembranes, published a number of papers in leading journals, and brought out a book on NMR Spectroscopy of Biological Solids. Ramamoorthy says that this area of research will grow considerably at U-M from implementing plans to set up a high magnetic field solid-state NM R spectrometer facility and an NIH-funded program.
'"/>

Source:University of Michigan


Related biology news :

1. Genetically Modified Natural Killer Immune Cells Attack, Kill Leukemia Cells
2. Natural Killers Could Lead to New Hepatitis Treatments
3. Natural tumor suppressor in body discovered by UCSD medical researchers
4. Naturally occurring asbestos linked to lung cancer
5. Natural compound from pond scum shows potential activity against Alzheimers
6. Natural selection at single gene demonstrated
7. Natural vitamin E tocotrienol reaches blood at protective levels
8. Natural pine bark extract relieves muscle cramp and pain in athletes and diabetics
9. Natural protein stops deadly human brain cancer in mice
10. Natural anti-viral enzyme helps keep cancer cells alive, researchers find
11. Natural polyester makes new sutures stronger, safer

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:8/15/2017)... LLC , a medical device company focused on improving the safety ... ISO 13485 Certification, the global standard for medical device quality management ... ... for the early detection of IV infiltrations. ... "This is an important milestone for ivWatch, as it validates our ...
(Date:6/30/2017)... , June 30, 2017 Today, American ... and supplier of face and eye tracking software, ... Product provider program. "Artificial intelligence ... way to monitor a driver,s attentiveness levels while ... being able to detect fatigue and prevent potential ...
(Date:6/14/2017)... (NYSE: IBM ) is introducing several innovative partner startups ... collaboration between startups and global businesses, taking place in ... nine startups will showcase the solutions they have built with ... France is one of the ... percent increase in the number of startups created between 2012 ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... They call it the ... network, a depiction of a system of linkages and connections so complex and ... professor of computer science at Worcester Polytechnic Institute (WPI) and director of the ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... Market with the addition of its newest module, US Hemostats & Sealants. , ... thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... platform specifically designed for life science researchers to analyze and interpret datasets, ... Franklin, who made a major contribution to the discovery of the double-helix ...
Breaking Biology Technology: