Navigation Links
Nanoparticles can track cells deep within living organisms

To the delight of researchers at Washington University School of Medicine in St. Louis, living cells gobbled up fluorine-laced nanoparticles without needing any coaxing. Then, because of the unusual meal, the cells were easily located with MRI scanning after being injected into mice.

Developed in the laboratories of Samuel A. Wickline, M.D., and Gregory Lanza, M.D., Ph.D., the nanoparticles could soon allow researchers and physicians to directly track cells used in medical treatments using unique signatures from the ingested nanoparticle beacons.

In an article that will appear in the June issue of the FASEB Journal, lead author Kathryn C. Partlow, a doctoral student in Wickline's lab, describes using perfluorocarbon nanoparticles to label endothelial progenitor cells taken from human umbilical cord blood. Such cells can be primed to help build new blood vessels when injected into the body. The researchers believe nanoparticle-labeled stem cells like these could prove useful for monitoring tumors and diagnosing and treating cardiovascular problems.

The nanoparticles contain a fluorine-based compound that can be detected by MRI scanners. Fluorine is most commonly known for being an element included in fluoride toothpastes. Wickline, who heads the Siteman Center of Cancer Nanotechnology Excellence, says this technology offers significant advantages over other cell-labeling technologies under development.

"We can tune an MRI scanner to the specific frequency of the fluorine compound in the nanoparticles, and only the nanoparticle-containing cells will be visible in the scan," he says. "That eliminates any background signal, which often interferes with medical imaging. Moreover, the lack of interference means we can measure very low amounts of the labeled cells and closely estimate their number by the brightness of the image."

The researchers believe that nanoparticle-labeled adult stem cells could be used to evaluate tu mors. Under an MRI scan, the presence of the labeled cells would reveal that the tumor was adding new blood vessels and therefore aggressively growing.

Adult stem cells are also under investigation in therapies that enhance new blood vessel growth to improve the blood supply to diabetic patients' limbs or to repair blood vessels after a heart attack or bypass surgery. Tracking nanoparticle-labeled cells used in such treatments by MRI imaging would allow physicians to monitor the treatment's success or failure.

The nanoparticles ?called "nano" because they measure only about 200 nanometers across, or 500 times smaller than the width of a human hair ?are made up largely of perfluorocarbon, a safe compound used in artificial blood. The fluorine atoms in the particles can be detected by tuning an MRI scanner to the unique signal frequency emitted by the perfluorocarbon compound used.

Since several perfluorocarbon compounds are available, different types of cells potentially could be labeled with different compounds, injected and then detected separately by tuning the MRI scanner to each one's individual frequency, says Wickline.

That makes the labeled cells potentially useful for vascular research as well. "Many kinds of cells are involved in the formation of new blood vessels," Partlow says. "Because we can create a separate MRI signature for different cells with these various types of unique nanoparticles, we could use them to better understand each cell type's role."

The nanoparticles are very compatible with living cells, according to the research findings. "The cells just take these particles in naturally ?no special sauces have to be added to make them tasty to these cells," says Wickline, also professor of medicine, of physics and of biomedical engineering and a Washington University heart specialist at Barnes-Jewish Hospital. "And then the cells just go about their business and do what they're supposed to do by homing in on targeted regions of the body."

Laboratory tests showed that the cells retained their usual surface markers and that they were still functional after the labeling process. The labeled cells were shown to migrate to and incorporate into blood vessels forming around tumors in mice.

The researchers believe the cells could soon be used in clinical settings. "Kathy and colleagues showed that we can scan for these cells at the same MRI field strength we are using in medical imaging," Wickline says. "Although we reported the first use of perfluorocarbon molecular imaging for detection of certain pathologies a few years ago, no one would have predicted that you could get enough signal from such small quantities of perfluorocarbons in labeled stem cells to actually see them. I think we've dispelled that notion, and the fluorine imaging approach already is becoming more popular for molecular imaging of various cell and tissue types."

Next the research group will evaluate how nanoparticle-labeled cells function in living organisms. "We'll track injected cells in real time and see where they accumulate and how long they live," Partlow says. "Then we'll go on to investigate how they work in therapeutic applications."


'"/>

Source:Washington University School of Medicine


Related biology news :

1. DNA Molecules Used To Assemble Nanoparticles
2. Imaging Lymph Nodes with Nanoparticles
3. Probing The Promise And Perils Of Nanoparticles
4. Nanoparticles offer new hope for detection and treatment
5. Nanoparticles carry cancer-killing drugs into tumor cells
6. Nanoparticles, nanoshells, nanotubes: How tiny specks may provide powerful tools against cancer
7. Nanoparticles for delivery of prostate cancer treatment
8. Cancer tip -- Nanoparticles can damage DNA, increase cancer risk
9. Protein offers way to stop microscopic parasites in their tracks
10. Stopping smallpox in its tracks: A new anti-viral approach
11. Findings have implications for tracking disease, drugs at the molecular level
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/28/2016)... First quarter 2016:   , ... the first quarter of 2015 The gross margin was ... 18.8) and the operating margin was 40% (-13) Earnings ... flow from operations was SEK 249.9 M (21.2) , ... SEK 7,000-8,500 M. The operating margin for 2016 is ...
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
(Date:3/31/2016)... , March 31, 2016 ... ) ("LegacyXChange" or the "Company") LegacyXChange is ... users of its soon to be launched online site ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders ... of DNA technology to an industry that is notorious ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... SALT LAKE CITY, UTAH. (PRWEB) , ... May 25, 2016 , ... ... create efficiencies in healthcare information exchange, today announced that Charles W. Stellar has been ... served as WEDI’s interim CEO since January 2016. As an executive leader with more ...
(Date:5/24/2016)... La Jolla, CA (PRWEB) , ... May 24, 2016 , ... ... and financial planning for corporate executives and entrepreneurs, held The Future of San Diego ... leaders in the San Diego life science community attended the event with speakers Dr. ...
(Date:5/23/2016)... 23, 2016 Oxitec CEO Hadyn ... at 10:15 a.m. ET before the United States House Committee ... mosquitos can play in controlling the spread of the ... virus.      (Logo: http://photos.prnewswire.com/prnh/20150630/227348 ) ... a self-limiting gene. Trials in Brazil , ...
(Date:5/20/2016)... CA (PRWEB) , ... May 20, 2016 , ... The ... 10 of its most experienced veterinary clients have treated over 100 of their own ... edge technology to provide the highest level of care for their patients. , ...
Breaking Biology Technology: