Navigation Links
Nanoparticle assembly enters the fast lane

The speed of nanoparticle assembly can be accelerated with the assistance of the molecule that carries life's genetic instructions, DNA, a team of researchers at the U.S. Department of Energy's Brookhaven National Laboratory recently found. Nanoparticles, particles with dimensions on the order of billionths of a meter, could potentially be used for more efficient energy generation and data storage, as well as improved methods for diagnosing and treating disease. Learning how to control and tailor the assembly of these miniscule particles into larger functional systems remains a major challenge for scientists. The Brookhaven results, published online on October 11, 2006, by the Journal of the American Chemical Society, are a step in that direction.

"Understanding how to self-assemble these types of nanomaterials has applications in all areas of nanotechnology, from optics to electronics to magnetic materials," said the study's lead author Mathew Maye, a Brookhaven chemist. Maye is part of a team of interdisciplinary scientists from Brookhaven's new Center for Functional Nanomaterials (CFN) and the biology department. The researchers found a way to control the assembly of gold nanoparticles using rigid, double-stranded DNA. Their technique takes advantage of this molecule's natural tendency to pair up components called bases, known by the code letters A, T, G and C.

"In biology, DNA is mainly an informational material, while in nanoscience, DNA is an excellent structural material due to its natural ability to self-assemble according to well-specified programmable rules," said Oleg Gang, the Brookhaven physicist who leads the research team. "Using biological materials such as DNA, we are developing approaches to control the assembly of inorganic nano-objects. However, in order to really turn this attractive approach into nanotechnology, we have to understand the complexity of interaction in such hybrid systems."

The synthetic DNA used in th e laboratory is capped onto individual gold nanoparticles and customized to recognize and bind to complementary DNA located on other particles. This process forms clusters, or aggregates, of gold particles.

"It's really by design," Maye said. "We can sit down with a piece of paper, write out a DNA sequence, and control how these nanoparticles will assemble."

One limitation to the assembly process is the use of single-stranded DNA, which can bend backward and attach to the particle's gold surface instead of binding with surrounding nanoparticles. This flexibility, along with the existence of multiple forms of single-stranded DNA, can greatly slow the assembly process. In the Brookhaven study, researchers introduced partially rigid, double-stranded DNA, which forces interacting linker segments of DNA to extend away from the gold surface, allowing for more efficient assembly.

"By using properties of DNA, we can increase assembly kinetics, or speed, by relatively simple means without a lot of synthetic steps," Maye said.

The research team probed the synthesized and assembled nanosystems with multiple imaging techniques, using beams of light and electrons as well as high-intensity x-rays at Brookhaven's National Synchrotron Light Source. The scientists look to further improve the controllability of the system, focusing next on the size of the nanoparticle clusters.
'"/>

Source:DOE/Brookhaven National Laboratory


Related biology news :

1. DNA Molecules Used To Assemble Nanoparticles
2. Imaging Lymph Nodes with Nanoparticles
3. Taking Aim With Nanoparticle PEBBLEs
4. Probing The Promise And Perils Of Nanoparticles
5. Nanoparticles offer new hope for detection and treatment
6. Nanoparticle Breast Cancer Drug Approved by FDA
7. Nanoparticles carry cancer-killing drugs into tumor cells
8. Nanoparticles, nanoshells, nanotubes: How tiny specks may provide powerful tools against cancer
9. Nanoparticles for delivery of prostate cancer treatment
10. Nanoparticles can track cells deep within living organisms
11. Cancer tip -- Nanoparticles can damage DNA, increase cancer risk

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/20/2016)... June 20, 2016 Securus Technologies, a ... solutions for public safety, investigation, corrections and monitoring ... involved, it has secured the final acceptance by ... for Managed Access Systems (MAS) installed. Furthermore, Securus ... to be installed by October, 2016. MAS distinguishes ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. and ... business relationship that includes integrating Syngrafii,s patented LongPen™ ... project. This collaboration will result in greater convenience ... credit union, while maintaining existing document workflow and ... ...
(Date:6/1/2016)... 1, 2016 Favorable Government Initiatives ... and Criminal Identification to Boost Global Biometrics System Market ... TechSci Research report, " Global Biometrics Market By ... and Opportunities, 2011 - 2021", the global biometrics market ... on account of growing security concerns across various end ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... Calif. , June 23, 2016  Blueprint Bio, ... biological discoveries to the medical community, has closed its ... Matthew Nunez . "We have received ... with the capital we need to meet our current ... essentially provide us the runway to complete validation on ...
(Date:6/23/2016)... 23, 2016 On Wednesday, June 22, ... down 0.22%; the Dow Jones Industrial Average edged 0.27% lower ... 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage on the following ... Therapeutics (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ... BIND ). Learn more about these stocks by accessing ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and technical consulting, provides a free webinar on Performing Quality Investigations: ... 2016 at 12pm CT at no charge. , Incomplete investigations are still a ...
(Date:6/23/2016)... 22, 2016  Amgen (NASDAQ: AMGN ) ... QB3@953 life sciences incubator to accelerate the development ... laboratory space at QB3@953 was created to help high-potential ... for many early stage organizations - access to laboratory ... Amgen launched two "Amgen Golden Ticket" awards, providing each ...
Breaking Biology Technology: