Navigation Links
Nano-particles effective in killing cancer with one-two punch of chemotherapeutics

Research studies, based at the University of Pennsylvania, demonstrate that biodegradable nano-particles containing two potent cancer-fighting drugs are effective in killing human breast tumors. The unique properties of the hollow shell nano-particles, known as polymersomes, allow them to deliver two distinct drugs, paclitaxel, the leading cancer drug known by brand names such as Taxol, and doxorubicin directly to tumors implanted in mice. Their findings, presented online in the journal Molecular Pharamaceutics, illustrate the broad clinical potential of polymersomes.

"The system provides a number of advantages over other Trojan horse-style drug delivery system, and should prove a useful tool in fighting a number of diseases," said Dennis Discher, a professor in Penn's School of Engineering and Applied Science and a member of Penn's newly established Institute for Translational Medicine and Therapeutics. "Here we show that drug-delivering polymersomes will break down in the acidic environment of the cancer cells, allowing us to target these drugs within tumor cells."

One key feature of molecular mechanism involves putting pores in the cancer cell's membranes and has been simulated with supercomputers by Michael F. Klein and Goundla Srinivas of Penn's Department of Chemistry. While cell membranes and liposomes (vesicles often used for drug-delivery) are created from a double layer of fatty molecules called phospholipids, a polymersome is comprised of two layers of synthetic polymers. The individual polymers are degradable and considerably larger than individual phospholipids but have many of the same chemical features. This results in a structure that looks like a very small cell or virus.

Discher and his colleagues take advantage of the polymersome properties to ferry their drug combination to the tumor. The large polymers making up the shell allow paclitaxel, which is water-insoluble, to embed within the shell. Doxorubicin, which is water-soluble, stays within the interior of the polymersome until it degrades. According to the researchers, the polymersome and drug combination is self-assembling ?the structure spontaneously forms when all of the components are suitably mixed together.

"Recent studies have shown that cocktails of paclitaxel and doxorubicin lead to better tumor regression than either drug alone, but there hasn't been any carrier system that can carry both drugs as efficiently to a tumor," said Fariyal Ahmed, the lead author, former doctoral student in bioengineering,and now a fellow at Harvard Medical School. "Polymersomes get around those limitations".

Discher developed polymersomes with Penn bioengineer Daniel Hammer in the 1990s. The Discher lab is further studying the drug- and gene-delivery capabilities of polymersomes, tailoring their shapes, sizes, loading and degradability to each application. Discher theorizes that polymersomes could be made capable of traveling to places in the body that are difficult for most drug-carrier systems to access.


'"/>

Source:University of Pennsylvania


Related biology news :

1. Combination therapy boosts effectiveness of telomere-directed cancer cell death
2. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
3. Boosting HIV screening can increase survival and is cost effective
4. Live vaccines more effective against horse herpes virus
5. Man-made wetlands effectiveness similar to natural marsh
6. Wake Forest scientists find new combination vaccine effective against plague
7. UCLA study assesses cost-effectiveness of Hepatitis B drugs
8. New study: Sexually transmitted disease treatment can be effectively administered by sex partners
9. New vaccine protects more effectively against tuberculosis
10. Harmless virus may hold key to more effective HIV drug discovery
11. Structures of marine toxins provide insight into their effectiveness as cancer drugs
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/6/2017)... -- RAM Group , Singaporean based technology ... biometric authentication based on a novel  quantum-state ... perform biometric authentication. These new sensors are based on a ... Group and its partners. This sensor will have widespread ... security. Ram Group is a next generation sensor ...
(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" ... its 2016 Annual Report on Form 10-K on Thursday April 13, ... ... the Investor Relations section of the Company,s website at http://www.nxt-id.com ... http://www.sec.gov . 2016 Year Highlights: ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... BOSTON (PRWEB) , ... October 12, 2017 , ... ... name for two-dimensional representations of a complex biological network, a depiction of a ... a big mess,” said Dmitry Korkin, PhD, associate professor of computer science at ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... United States multicenter, prospective clinical study that demonstrates the accuracy of the ... of identifying clinically significant acute bacterial and viral respiratory tract infections by ...
(Date:10/12/2017)... CA (PRWEB) , ... October ... ... (https://www.onramp.bio/ ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed ... bioinformatics complexity. Named in honor of pioneering researcher Rosalind Franklin, who made ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... Personal eye wash is a basic first ... eye at a time. So which eye do you rinse first if a dangerous substance ... Plum Duo Eye Wash with its unique dual eye piece. , “Whether its ...
Breaking Biology Technology: