Navigation Links
NYU, Rockefeller researchers find complexity of regulation by microRNA genes

Collaborating researchers at New York University and Rockefeller University have discovered that microRNA genes, which have recently been shown to have key roles in gene regulation, can team up and regulate target genes in mammals. MicroRNAs are a recently discovered large class of regulatory, non-coding genes, which bind to partially complementary sites in target messenger RNA to regulate their stability and translation. However, little has been known about the biological function of microRNAs--a process the current study sought to explore.

The paper, published in the latest issue of the journal Nature Genetics, found that a microRNA gene regulates, on average, 200 different human gene transcripts and that many microRNAs can coordinate their activities to regulate specific target genes. The paper contains detailed genome-wide predictions for all human microRNAs as well as tissue-specific predictions. Several predictions were validated experimentally. The findings demonstrate an unforeseen staggering complexity of gene regulation executed by microRNAs on a genome-wide level.

In this study, lead author Nikolaus Rajewsky, a genomics faculty member in NYU's Center for Comparative Functional Genomics and an assistant professor in the Department of Biology, and the research team developed "PicTar," a new algorithm for the identification of microRNA target sites in the genome and used it to compare sequences from eight different vertebrates.

"The study demonstrates that computational methods, in conjunction with the exploding amounts of available sequence data from different species, have the power to not only arrive at large-scale and yet specific, testable predictions for gene regulation, but also to produce new general insights into how gene regulation is organized in the genome," says Rajewsky, who holds an affiliated appointment at NYU's Courant Institute of Mathematical Sciences.

Rajewsky's research program on bioinformatics prediction s of regulatory elements in genomes is being conducted at NYU's Center for Comparative Functional Genomics, where the focus of the research programs is to combine genomic approaches with developmental genetics and evolution to understand how changes in genomes give rise to the diversity of regulatory mechanisms in animals and plants.


'"/>

Source:New York University


Related biology news :

1. NYU researchers simulate molecular biological clock
2. Vital step in cellular migration described by UCSD medical researchers
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. UCSD researchers maintain stem cells without contaminated animal feeder layers
5. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
6. New protein discovered by Hebrew University researchers
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. Agilent Technologies releases automated literature search tool for biology researchers
9. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
10. Yale researchers identify molecule for detecting parasitic infection in humans
11. US life expectancy about to decline, researchers say
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/30/2017)... ARLINGTON, Va. , June 30, 2017 /PRNewswire-USNewswire/ ... a leading developer and supplier of face and ... the ATA Featured Product provider program. ... created an innovative way to monitor a driver,s ... benefit greatly from being able to detect fatigue ...
(Date:5/23/2017)... May 23, 2017  Hunova, the first robotic gym for the rehabilitation ... officially launched in Genoa, Italy . The first 30 ... and the USA . The technology was developed and ... by the IIT spin-off Movendo Technology thanks to a 10 million euro ... Release, please click: ...
(Date:5/6/2017)... 5, 2017 RAM Group , ... new breakthrough in biometric authentication based on a ... properties to perform biometric authentication. These new sensors are ... created by Ram Group and its partners. This sensor ... supply chains and security. Ram Group is a ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... The ... three Winners and six Finalists of the 2017 Blavatnik Regional Awards for Young ... Family Foundation and administered by the New York Academy of Sciences to honor ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... first-ever genomics analysis platform specifically designed for life science researchers to analyze ... pioneering researcher Rosalind Franklin, who made a major contribution to the discovery ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia Inc ... hosting a Webinar titled, “Pathology is going digital. Is your lab ready?” with ... adoption best practices and how Proscia improves lab economics and realizes an increase ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... Administration (FDA) has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal ... the treatment of osteosarcoma. SBT-100 is able to cross the cell membrane and ...
Breaking Biology Technology: