Navigation Links
Muscle and bone from an ink-jet printer

A Pittsburgh-based research team has used an innovative inkjet system to print unique "bio-ink" patterns that directed adult muscle-derived stem cells from mice to differentiate into both muscle cells and bone cells.

This is the first report of a system that can pattern the formation of multiple tissues from a single population of adult stem cells.

Bioengineers from Carnegie Mellon University’s Robotics Institute and the Institute for Complex Engineered Systems teamed with stem cell biologists from the University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh to demonstrate the use of ink-jet printing to pattern “bio-inks?combinations of growth factors to control the fate of stem cells. Working with mice, the Pittsburgh biologists have gained considerable experience in using growth factors to control proliferation and differentiation in populations of “muscle-derived stem cells,?or MDSCs. Previous work by University of Pittsburgh researchers has demonstrated the ability of MDSCs to repair muscle in a model for Duchenne Muscular Dystrophy, improve cardiac function following heart failure, and heal large bone defects in the skull. Controlling not only what types of cells differentiate from stem cells, but also gaining spatial control of stem cell differentiation, are important capabilities if researchers are to engineer replacement tissues that might be used in treating disease, trauma, or genetic abnormalities. Spatial patterning of stem cell differentiation through delivery of bio-inks with an ink-jet printer will offer the Pittsburgh researchers a whole new level of complexity and control.

The custom built ink-jet printer, which was developed at Carnegie Mellon, can deposit bio-inks in virtually any design, pattern, or concentration, laying down patterns on fibrin-coated slides placed in culture dishes containing MDSCs. Based on pattern, dose, or factor printed by the ink-jet, the MDSCs could be directed when to differentiate into various cell types (e.g., bone- or muscle-like). Immunocytochemical analyses confirmed that the bio-ink patterns successfully directed differentiation of the MDSCs toward a myogenic or an osteogenic lineage in direct registration to patterns.

The proof-of-concept experiment led to the formation of muscle- and bone-like tissues simultaneously in the same culture dish. The long-term promise of this new technology could be the tailoring of tissue-engineered regenerative therapies. In preparation for preclinical studies, the Pittsburgh researchers are following up this work by combining the versatile ink-jet system with advanced live cell imaging developed at Carnegie Mellon’s Robotics Institute and Molecular Biosensor and Imaging Center to further understand how stem cells differentiate into bone, muscle, or other cell types.
'"/>

Source:American Society for Cell Biology


Related biology news :

1. Muscle-targeted gene therapy reverses rare muscular dystrophy in mice
2. X-Ray Beams And Fruit Fly Flight Simulator Aid Scientists View Of Muscle Power
3. Young Blood Revives Aging Muscles, Stanford Researchers Find
4. Muscle repair: Making a good system better, faster; implications for aging, disease

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/26/2016)... April 27, 2016 Research ... Multi-modal Biometrics Market 2016-2020"  report to their offering.  ... The analysts forecast the global multimodal ... 15.49% during the period 2016-2020.  Multimodal ... sectors such as the healthcare, BFSI, transportation, automotive, ...
(Date:4/13/2016)... 13, 2016  IMPOWER physicians supporting Medicaid patients in ... new clinical standard in telehealth thanks to a new ... higi platform, IMPOWER patients can routinely track key health ... mass index, and, when they opt in, share them ... to a local retail location at no cost. By ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... -- The Prostate Cancer Foundation (PCF) is pleased to announce 24 new ... prostate cancer. Members of the Class of 2016 were selected from a pool ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... STACS DNA Inc., ... Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as a Field ... DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding ...
(Date:6/23/2016)... LONDON , June 23, 2016 ... & Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... Review , the peer-reviewed journal from touchONCOLOGY, ... the escalating cost of cancer care is placing ... a result of expensive biologic therapies. With the ...
Breaking Biology Technology: