Navigation Links
Muscle and bone from an ink-jet printer

A Pittsburgh-based research team has used an innovative inkjet system to print unique "bio-ink" patterns that directed adult muscle-derived stem cells from mice to differentiate into both muscle cells and bone cells.

This is the first report of a system that can pattern the formation of multiple tissues from a single population of adult stem cells.

Bioengineers from Carnegie Mellon University’s Robotics Institute and the Institute for Complex Engineered Systems teamed with stem cell biologists from the University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh to demonstrate the use of ink-jet printing to pattern “bio-inks?combinations of growth factors to control the fate of stem cells. Working with mice, the Pittsburgh biologists have gained considerable experience in using growth factors to control proliferation and differentiation in populations of “muscle-derived stem cells,?or MDSCs. Previous work by University of Pittsburgh researchers has demonstrated the ability of MDSCs to repair muscle in a model for Duchenne Muscular Dystrophy, improve cardiac function following heart failure, and heal large bone defects in the skull. Controlling not only what types of cells differentiate from stem cells, but also gaining spatial control of stem cell differentiation, are important capabilities if researchers are to engineer replacement tissues that might be used in treating disease, trauma, or genetic abnormalities. Spatial patterning of stem cell differentiation through delivery of bio-inks with an ink-jet printer will offer the Pittsburgh researchers a whole new level of complexity and control.

The custom built ink-jet printer, which was developed at Carnegie Mellon, can deposit bio-inks in virtually any design, pattern, or concentration, laying down patterns on fibrin-coated slides placed in culture dishes containing MDSCs. Based on pattern, dose, or factor printed by the ink-jet, the MDSCs could be directed when to differentiate into various cell types (e.g., bone- or muscle-like). Immunocytochemical analyses confirmed that the bio-ink patterns successfully directed differentiation of the MDSCs toward a myogenic or an osteogenic lineage in direct registration to patterns.

The proof-of-concept experiment led to the formation of muscle- and bone-like tissues simultaneously in the same culture dish. The long-term promise of this new technology could be the tailoring of tissue-engineered regenerative therapies. In preparation for preclinical studies, the Pittsburgh researchers are following up this work by combining the versatile ink-jet system with advanced live cell imaging developed at Carnegie Mellon’s Robotics Institute and Molecular Biosensor and Imaging Center to further understand how stem cells differentiate into bone, muscle, or other cell types.

Source:American Society for Cell Biology

Related biology news :

1. Muscle-targeted gene therapy reverses rare muscular dystrophy in mice
2. X-Ray Beams And Fruit Fly Flight Simulator Aid Scientists View Of Muscle Power
3. Young Blood Revives Aging Muscles, Stanford Researchers Find
4. Muscle repair: Making a good system better, faster; implications for aging, disease

Post Your Comments:

(Date:5/12/2016)... -- , a brand of Troubadour Research ... the Q1 wave of its quarterly wearables survey. A ... to a program where they would receive discounts for ... "We were surprised to see that so ... , CEO of Troubadour Research, "primarily because there are ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 Apellis ... Phase 1 clinical trials of its complement C3 ... single and multiple ascending dose studies designed to ... (PD) of subcutaneous injection in healthy adult volunteers. ... (SC) either as a single dose (ranging from ...
(Date:6/23/2016)... 23, 2016 Andrew ... Published recently in ... journal from touchONCOLOGY, Andrew D Zelenetz , ... cancer care is placing an increasing burden on ... biologic therapies. With the patents on many biologics ...
(Date:6/23/2016)... San Francisco, CA (PRWEB) , ... June 23, ... ... capture (EDC) software, is exhibiting at the Pennsylvania Convention Center and will showcase ... DIA Annual conference. ClinCapture will also be presenting a scientific poster on Disrupting ...
(Date:6/23/2016)... Connecticut (PRWEB) , ... June 23, 2016 , ... ... introduce a new line of intelligent tools designed, tuned and optimized exclusively for ... September 12–17 in Chicago. The result of a collaboration among several companies with ...
Breaking Biology Technology: