Navigation Links
Muscle and bone from an ink-jet printer

A Pittsburgh-based research team has used an innovative inkjet system to print unique "bio-ink" patterns that directed adult muscle-derived stem cells from mice to differentiate into both muscle cells and bone cells.

This is the first report of a system that can pattern the formation of multiple tissues from a single population of adult stem cells.

Bioengineers from Carnegie Mellon University’s Robotics Institute and the Institute for Complex Engineered Systems teamed with stem cell biologists from the University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh to demonstrate the use of ink-jet printing to pattern “bio-inks?combinations of growth factors to control the fate of stem cells. Working with mice, the Pittsburgh biologists have gained considerable experience in using growth factors to control proliferation and differentiation in populations of “muscle-derived stem cells,?or MDSCs. Previous work by University of Pittsburgh researchers has demonstrated the ability of MDSCs to repair muscle in a model for Duchenne Muscular Dystrophy, improve cardiac function following heart failure, and heal large bone defects in the skull. Controlling not only what types of cells differentiate from stem cells, but also gaining spatial control of stem cell differentiation, are important capabilities if researchers are to engineer replacement tissues that might be used in treating disease, trauma, or genetic abnormalities. Spatial patterning of stem cell differentiation through delivery of bio-inks with an ink-jet printer will offer the Pittsburgh researchers a whole new level of complexity and control.

The custom built ink-jet printer, which was developed at Carnegie Mellon, can deposit bio-inks in virtually any design, pattern, or concentration, laying down patterns on fibrin-coated slides placed in culture dishes containing MDSCs. Based on pattern, dose, or factor printed by the ink-jet, the MDSCs could be directed when to differentiate into various cell types (e.g., bone- or muscle-like). Immunocytochemical analyses confirmed that the bio-ink patterns successfully directed differentiation of the MDSCs toward a myogenic or an osteogenic lineage in direct registration to patterns.

The proof-of-concept experiment led to the formation of muscle- and bone-like tissues simultaneously in the same culture dish. The long-term promise of this new technology could be the tailoring of tissue-engineered regenerative therapies. In preparation for preclinical studies, the Pittsburgh researchers are following up this work by combining the versatile ink-jet system with advanced live cell imaging developed at Carnegie Mellon’s Robotics Institute and Molecular Biosensor and Imaging Center to further understand how stem cells differentiate into bone, muscle, or other cell types.
'"/>

Source:American Society for Cell Biology


Related biology news :

1. Muscle-targeted gene therapy reverses rare muscular dystrophy in mice
2. X-Ray Beams And Fruit Fly Flight Simulator Aid Scientists View Of Muscle Power
3. Young Blood Revives Aging Muscles, Stanford Researchers Find
4. Muscle repair: Making a good system better, faster; implications for aging, disease

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/11/2017)... 11, 2017  Michael Johnson, co-founder of Visikol Inc. a company ... has been named to the elite "Forbes 30 Under 30" list ... 600 people in 20 fields nationwide to be recognized as a ... applicants were selected. ... He is currently a PhD candidate at Rutgers University. ...
(Date:1/4/2017)...  CES 2017 – Valencell , the leading ... the launch of two new versions of its ... sensor modules that incorporate the best of Valencell,s ... The two new designs include Benchmark BE2.0, a ... Benchmark BW2.0, a 2-LED version of its original ...
(Date:12/20/2016)... N.C. and GENEVA, Dec, 20, 2016 /PRNewswire/ ... biometric data sensor technology, and STMicroelectronics ... the spectrum of electronics applications, announced today the ... development kit for biometric wearables that includes ST,s ... with Valencell,s Benchmark™ biometric sensor system. ...
Breaking Biology News(10 mins):
(Date:1/21/2017)... CAMBRIDGE, Mass. , Jan. 21, 2017   ... of novel compounds designed to target cancer stemness pathways, ... lead investigational compound, napabucasin, at the 2017 American Society ... San Francisco . In ... administered investigational agent designed to inhibit cancer stemness pathways ...
(Date:1/20/2017)... , January 20, 2017 ... market conditions have influenced the most recent performances of ... Inc. (NASDAQ: RGLS ), Abeona Therapeutics Inc. ... TBPH ), and Sage Therapeutics Inc. (NASDAQ: ... report by Grand View Research, global Biotech market size is expected ...
(Date:1/20/2017)... , January 20, 2017 ... cancer is one of leading causes of death worldwide. ... Although the number of cancer related deaths increased gradually ... Rising in incidence rate of various cancers continues to ... a research report by Global Market Insights, Inc. cancer ...
(Date:1/19/2017)... -- Research and Markets has announced the addition of ... Application - Global Opportunity Analysis and Industry Forecast, 2014-2022" report ... ... projected to reach $15,737 million by 2022 from $6,521 in 2015, ... Omic technologies segment accounted for more than half of ...
Breaking Biology Technology: