Navigation Links
Multi-species genome comparison sheds new light on evolutionary processes, cancer mutations

An international team that includes researchers from the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health (NIH), has discovered that mammalian chromosomes have evolved by breaking at specific sites rather than randomly as long thought ?and that many of the breakage hotspots are also involved in human cancer.

In a study published in the July 22 issue of the journal Science, a team of 25 scientists from the United States, France and Singapore compared the organization of the chromosomes of eight mammalian species: human, mouse, rat, cow, pig, dog, cat and horse. Using sophisticated computer software to align and compare the mammals' genetic material, or genomes, the team determined that chromosomes tend to break in the same places as species evolve, resulting in rearrangements of their DNA. Prior to the discovery of these breakage hotspots, the prevailing view among scientists was that such rearrangements occurred at random locations.

"This study shows the tremendous power of using multi-species genome comparisons to understand evolutionary processes, including those with potential relevance to human disease," said NHGRI Scientific Director Eric D. Green, M.D., Ph.D. "The dog genome map generated by NHGRI researchers and their collaborators played a key role in these new analyses. Furthermore, the team took full advantage of the wealth of human, mouse and rat genome sequence data generated by the recently completed Human Genome Project."

Chromosomes are the threadlike "packages" of DNA located in the nucleus of each cell. When cells divide, a chromosome occasionally breaks and the fragment can get stuck onto another chromosome. In addition, fragments may break off from two different chromosomes and swap places.

Chromosomal breakages, also referred to as translocations, are thought to be important in terms of evolution. When chromosomes break in egg or sperm cells, opportunities arise for the rea rrangement of DNA in the resulting offspring. Such inheritable rearrangements may be lethal or cause disease. However, in some cases, the breaks may lead to the production of new or altered proteins with potential to benefit an organism. In addition to their evolutionary implications, chromosomal translocations are known to contribute to the development or progression of many types of cancer.

In their paper, researchers report that the chromosomal abnormalities most frequently associated with human cancer are far more likely to occur in or near the evolutionary breakage hotspots than are less common types of cancer-associated abnormalities. Researchers theorize that the rearrangements seen near breakage hotspots may activate genes that trigger cancer and/or inactivate genes that normally suppress cancer. However, they emphasize that far more work remains to be done to clarify the relationship between cancer and the breakage hotspots. One thing researchers have determined is that the regions immediately flanking the breakage hotspots contain more genes, on average, than the rest of the genome.

The team was led by Harris A. Lewin, Ph.D., of the University of Illinois at Urbana-Champaign, and William J. Murphy, Ph.D., of Texas A&M University in College Station. Mapping data for the dog genome were provided by NHGRI's Elaine Ostrander, Ph.D., and Heidi G. Parker, Ph.D., along with scientists from the French National Center for Scientific Research at the University of Rennes. Other study participants were from the National Cancer Institute, the Genome Institute of Singapore and the University of California at San Diego.

"Science tells us that the most effective tool we currently have to understand our own genome is to compare it with the genomes of other organisms. With each new genome that we sequence, we move closer to filling the gaps in our knowledge," said Dr. Ostrander, who is chief of the Cancer Genetics Branch in NHGRI's Division of In tramural Research.

The multi-species comparison published in Science also yielded surprising results about the rate at which chromosomal evolution occurs. Based on an analysis that included a computer-generated reconstruction of the genomes of long-extinct mammals, researchers found the rate of chromosomal evolution among mammals dramatically accelerated following the extinction of the dinosaurs about 65 million years ago.

Before the sudden demise of dinosaurs and many other types of animals, which is thought to have resulted from a massive comet or asteroid striking Earth, mammals shared fairly similar body plans and also fairly similar genomes. Researchers speculate that the mass extinction opened new ecological niches for mammals, spurring their diversification and the emergence of new mammalian orders. This situation would have facilitated opportunities for the isolation of mammals into more distinct breeding groups, speeding the development of species-specific chromosomes.

"This study has revealed many hidden secrets on the nature and timing of genome evolution in mammals, and it demonstrates how the study of basic evolutionary processes can lead to new insights into the origin of human diseases," said Dr. Lewin, who is director of the Institute of Genomic Biology at the University of Illinois.


'"/>

Source:NIH/National Human Genome Research Institute


Related biology news :

1. Man and mouse share genome structures
2. Whole genome fine map of rice completed
3. Study finds more than one-third of human genome regulated by RNA
4. A bacterial genome reveals new targets to combat infectious disease
5. Scientists decipher genome of fungus that can cause life-threatening infections
6. Highly adaptable genome in gut bacterium key to intestinal health
7. Fleshing out the genome
8. Agilent Technologies new genome analysis technology set to accelerate Australia fight against mesothelioma
9. wFleaBase: the Daphnia genome database
10. NHGRI targets 12 more organisms for genome sequencing
11. Chimp genome reveals a retroviral invasion
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/28/2016)... First quarter 2016:   , Revenues amounted to ... of 2015 The gross margin was 49% (27) ... operating margin was 40% (-13) Earnings per share rose ... was SEK 249.9 M (21.2) , Outlook   ... The operating margin for 2016 is estimated to exceed ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
(Date:4/14/2016)... April 14, 2016 BioCatch ... Detection, today announced the appointment of Eyal Goldwerger ... role. Goldwerger,s leadership appointment comes at a ... of the deployment of its platform at several of ... technology, which discerns unique cognitive and physiological factors, is ...
Breaking Biology News(10 mins):
(Date:5/3/2016)... ... May 03, 2016 , ... ... the sensor and data driven conferences, will take place on June 7-8, 2016, at the New ... Vidya Raman-Tangella on incorporating technology -- including AR/VR, machine learning, apps, robotics and AI ...
(Date:5/2/2016)... NEW YORK , May 2, 2016 ... company announces that its technology partner Mannin Research Inc. ... and Ophthalmology (ARVO), which takes place from May 1-5, ... Research executives will be meeting with its vendors and ... further explore business development goals and other collaborative opportunities ...
(Date:4/29/2016)... ... 29, 2016 , ... Proove Biosciences, Inc ., the ... launch of the Proove Health Foundation . The Foundation is a non-profit ... use of personalized medicine for tackling the nation’s most-pressing healthcare epidemics. As part ...
(Date:4/29/2016)... (PRWEB) , ... April 29, 2016 , ... Intelligent Implant ... by the FDA via 510(k) for sale in the United States. These components ... posterior thoraco-lumbar fusions. With one-level sales beginning in October of 2015, the company ...
Breaking Biology Technology: