Navigation Links
Movement of chromosome in nucleus visualized

The cell is understood to be highly organized, with specialized areas for different functions and molecular motors shuttling components around. Researchers from the University of Illinois' Chicago and Urbana-Champaign campuses now offer the first imaging evidence from live cells of ongoing organization and transport within the cell nucleus.

Genes that are active are located mainly in the central region of the nucleus, while inactive genes are at the periphery. But scientists have had no way to track chromosome movement inside the nucleus or to determine whether the location of the chromosomes was the result of random diffusion or if they are moved around by molecular motors.

In a study published in the April 17 issue of Current Biology, UIC and UIUC researchers show that chromosomes in the cell nucleus are capable of directed, long-range movement that depends on actin and myosin, the major molecular motor complex in the cytoplasm.

Developing a system for observing nuclear motion was difficult because chromosome movement is extremely light-sensitive. One exposure to light, and the chromosome would not move, even though the cell appeared undamaged. After extensive experimentation, researchers at UIUC developed a method that allowed them to take pictures without killing the movement.

Using this system, UIUC graduate student Chien-Hui Chuang studied a chromosome that is normally found in an inactive state near the nuclear periphery and moves to the interior of the nucleus when it receives an activating signal.

"The movement following activation was radically different from the rapid, but short-range, diffuse movement previously observed in these nuclei," said Dr. Andrew Belmont, professor of cell and developmental biology at UIUC, principle investigator and co-author of the study. It was clear that this was directed movement that required a motor, Belmont said, because the chromosome was moving in a nearly straight line perpend icular to the nuclear envelope. The chromosome traveled further in several minutes than ever observed, even over several hours, in the absence of activation.

"It looked nothing like the random, but localized, bouncing around that had been previously observed," he said.

Belmont's group collaborated with Primal de Lanerolle, professor of physiology and biophysics at UIC, who had discovered a type of myosin in the nucleus. Most myosin molecules are found in the cytoplasm, where they interact with actin filaments to do physical work. Because these molecules can contract muscles or move things around, they are called molecular motors. de Lanerolle and his colleagues were able to offer the Belmont laboratory a number of ways to test whether the chromosome movement was actin/myosin-dependent.

When the researchers introduced a mutant form of myosin protein to the nucleus, the movement slowed. Introducing a mutant actin that does not form filaments stopped the movement, while the introduction of an actin mutant that enhances filament formation accelerated the movement. In addition, when a drug that inhibits actin/myosin interactions was added to the cells, the chromosome movement was stopped completely. These experiments conclusively established that actin and myosin are involved in this chromosome movement.

"While we have known for a long time that actin is present in the nucleus and we had shown that myosin is also present in the nucleus, nobody really knew if they worked together," said de Lanerolle.

"There has been tantalizing evidence of organization in the nucleus--active genes found in the central region associated with nucleus complexes of transcription machinery necessary for gene expression, while inactive genes are found at the periphery," Belmont said. "For the first time, we have been able to observe an active mechanism for directed long-range chromosome movements that depend directly or indirectly on actin and myosin."< /p>

Other authors include graduate students Anne Carpenter at UIUC, currently at a post-doctoral fellow at M.I.T., and Beata Fuchsova and Terezina Johnson at UIC.


'"/>

Source:University of Illinois at Chicago


Related biology news :

1. Found: Missing sequence of the human Y chromosome
2. Variation in womens X chromosomes may explain differences among individuals, between sexes
3. Scientists analyze chromosomes 2 and 4
4. Normal chromosome ends elicit a limited DNA damage response
5. Utah researchers confirm chromosome may harbor autism gene
6. Mouse to man: The story of chromosomes
7. Sex chromosome genes influence aggression andmaternal behavior, say UVa researchers
8. Signature of chromosome instability predicts cancer outcomes
9. Researchers use multiphoton microscopy to watch chromosomes in action
10. Short chromosomes put cancer cells in forced rest
11. Researchers attach genes to minichromosomes in maize
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/21/2016)... VANCOUVER, British Columbia , June 21, 2016 ... been appointed to the new role of principal ... has been named the director of customer development. ... , NuData,s chief technical officer. The moves reflect ... development teams in response to high customer demand ...
(Date:6/9/2016)... 9, 2016 Paris Police ... video security solution to ensure the safety of people and ... during the major tournament Teleste, an international technology ... services, announced today that its video security solution will be ... back up public safety across the country. The system roll-out ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, ... Infrastructure, Support & Other Service  The latest ... comprehensive analysis of the global Border Security market ... of $17.98 billion in 2016. Now: In ... in software and hardware technologies for advanced video surveillance. ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)... N.C. (PRWEB) , ... June 27, 2016 , ... ... commercial operations for Amgen, will join the faculty of the University of ... as adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus ...
(Date:6/27/2016)... BOSTON , June 27, 2016   Ginkgo ... biology to industrial engineering, was today awarded as ... a selection of the world,s most innovative companies. ... at scale for the real world in the ... organism engineers work directly with customers including Fortune ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
Breaking Biology Technology: