Navigation Links
Mouse study reveals new clues about virulence of 1918 influenza virus

The first comprehensive analysis of an animal's immune response to the 1918 influenza virus provides new insights into the killer flu, report federally supported scientists in an article appearing online today in the journal Nature. Key among these insights, they found that the 1918 virus triggers a hyperactive immune response that may contribute to the lethality of the virus. Furthermore, their results suggest that it is the combination of all eight of the 1918 flu virus genes interacting synergistically that accounts for the exceptional virulence of this virus.

Michael G. Katze, Ph.D., of the University of Washington School of Medicine, Seattle, a grantee of the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health (NIH), led the research team with University of Washington's John Kash, Ph.D. The work with the fully reconstructed 1918 virus was conducted by coauthor Terrence Tumpey, Ph.D., in a biosafety level 3-enhanced laboratory at the U.S. Centers for Disease Control and Prevention in Atlanta.

"Understanding as much as possible about the virus that caused the devastating 1918-1919 influenza pandemic is an urgent imperative as we pursue efforts to prepare for--and possibly thwart--the next flu pandemic," says NIH Director Elias A. Zerhouni, M.D.

"This elegant research gives a detailed picture of the overzealous host reaction to infection by a fully reconstructed 1918 influenza virus," says NIAID Director Anthony S. Fauci, M.D. "The research provides clues as to why the flu of 1918 was so deadly, and may also help us better understand the disease process that occurs when people are infected by emerging avian influenza viruses, such as the H5N1 strain."

Unlike typical seasonal flu, which strikes hardest at the very young, the elderly and those with compromised immune function, the 1918 flu disproportionately killed young people in the prime of life. Modern analyses of 1918 flu v ictim autopsy samples show extreme and extensive damage to lung tissues. This observation gave rise to the hypothesis that the 1918 flu virus infection provoked an uncontrolled inflammatory response leading to rapid lung failure and death.

To test this idea, Dr. Tumpey infected mice intranasally with one of four types of flu virus: human seasonal flu virus from a strain that circulated in Texas in 1991; lab-made viruses containing either two or five of eight viral genes from the 1918 virus; or a reconstructed virus containing all eight 1918 flu virus genes. Lung tissue from three infected mice in each group was removed on days 1, 3 and 5 post-infection and processed to destroy any virus. The mouse genetic material (RNA) was then extracted from these lung samples and sent to the University of Washington team for analysis.

Drs. Katze and Kash and colleagues examined the mouse RNA using microarrays to determine which genes were activated when exposed to each of the four viruses. This analysis showed that the immune response to the reconstructed 1918 virus containing all eight flu genes was much greater than to any of the other viruses with all eight genes, says Dr. Katze. In particular, genes involved in promoting inflammation were strongly and immediately activated following infection by the reconstructed 1918 virus. "We clearly see a dramatic and uncontrolled immune response in the mouse lungs as early as one day following infection with the reconstructed 1918 virus," he says. A complete understanding of the host's response to the 1918 flu virus, adds Dr. Katze, requires use of a fully reconstructed virus.

A fuller picture of the host immune response to the 1918 flu virus could also be valuable to scientists working to develop therapies against such viruses as the H5N1 avian influenza, the researchers note. Besides targeting the flu virus itself, Dr. Katze explains, researchers might develop new or improved agents aimed at moderating or h alting the human immune system's overactive response to these viruses.
'"/>

Source:NIH/National Institute of Allergy and Infectious Diseases


Related biology news :

1. Mouse brain cells rapidly recover after Alzheimers plaques are cleared
2. Mouse brain tumors mimic those in human genetic disorder
3. Research Using Mouse Models Reveals A Novel Key Player In The Initiation Of Colon Cancer
4. Mouse gene shows new mechanism behind cardiac infarction in man
5. Mouse with designer liver has enhanced glucose tolerance, insulin response
6. Agilent Technologies Introduces First Commercial Mouse Microarray for Comparative Genomic Hybridization Research
7. Mouse genome much more complex than expected
8. Mouse study: New muscle-building agent beats all previous ones
9. Mouse study reveals human X-SCID gene therapy poses substantial cancer risk
10. Mouse to man: The story of chromosomes
11. Mouse mimics chronic leukemia, will aid drug development

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/11/2017)... 11, 2017 Crossmatch®, a globally-recognized leader ... today announced that it has been awarded a ... Activity (IARPA) to develop next-generation Presentation Attack Detection ... "Innovation has been a driving force within Crossmatch ... allow us to innovate and develop new technologies ...
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
(Date:3/30/2017)... -- On April 6-7, 2017, Sequencing.com will host the world,s ... at Microsoft,s headquarters in Redmond, Washington ... health and wellness apps that provide a unique, personalized ... is the first hackathon for personal genomics and the ... the genomics, tech and health industries are sending teams ...
Breaking Biology News(10 mins):
(Date:5/24/2017)... , ... May 24, 2017 , ... ... and implementation of CLEARAS Water Recovery’s Advanced Biological Nutrient Recovery (ABNR™) technology at ... of a $24 million plant upgrade to sustainably meet current and future nutrient ...
(Date:5/23/2017)... Canada (PRWEB) , ... May 23, 2017 , ... ... Firmex FileSend, a cloud-based file transfer solution that makes it easy for organizations ... without having to worry about cumbersome FTP software or email file size limitations. ...
(Date:5/23/2017)... Washington, USA (PRWEB) , ... May 22, 2017 ... ... SPIE Optics and Photonics 2017 in San Diego, California, this August will ... reality, solar fuels, and autonomous vehicles. , SPIE Optics and Photonics, the largest ...
(Date:5/23/2017)... Massachusetts (PRWEB) , ... May 23, 2017 , ... ... making a splash at this year’s Bio-IT World Conference and Expo in ... Smart Data Lake® 4.0 solution. The Anzo Smart Data Lake is also a ...
Breaking Biology Technology: