Navigation Links
Molecule that usually protects infection-fighting cells may cause plaque deposits inside arteries

A molecule that usually protects the body's infection-fighting cells might also contribute to fatty buildups that coat arteries and lead to heart disease, UT Southwestern Medical Center researchers have found.

The molecule, called apoptosis inhibitor of macrophage or AIM, inhibits cell death in macrophages, which circulate in the bloodstream and help the body fend off infection and foreign substances. The AIM-protected macrophages go on to encourage buildup of fats on the interior walls of arteries, according to Dr. Toru Miyazaki, senior author of a study that appears in the March issue of the journal Cell Metabolism.

"We found that AIM is highly expressed in certain macrophages and that lack of AIM dramatically decreased early atherosclerotic lesion development in mice," Dr. Miyazaki said. "These results may imply a novel therapeutic application of AIM regulation for prevention of atherosclerosis in the future. Most importantly and attractively for patients, this approach may not need dietary restriction."

Dr. Miyazaki, associate professor in the Center for Immunology and of pathology, and his colleagues first discovered the protective role of AIM six years ago. In the current study, scientists exposed mice lacking AIM to a fatty diet that would normally induce atherosclerosis.

After several weeks, researchers found little to no atherosclerotic lesions. Comparatively, in mice that had normal AIM function, there was marked presence of plaque deposits in the arteries following a diet of high-fat food.

"This was dramatic evidence that showed suppressing AIM function translates into prevention of atherosclerosis," Dr. Miyazaki said.

Atherosclerosis, known as "hardening of the arteries," occurs when the inside walls of an artery become thicker and less elastic.

This narrows the space for blood flow and can lead to angina and heart attacks in some people. Fatty buildups occur on the inner lining of an artery and grad ually thicken into a plaque. As plaque grows, it narrows the artery more and more. When the plaque ruptures, blood clots form that can block the artery entirely.

Low-density lipoprotein is transported inside arteries by macrophages, which engulf the cholesterol through a process called oxidation. Macrophages produce pro-inflammatory substances, which cause a secondary effect, encouraging other cells to accumulate and worsen plaque buildup in arteries.

"The oxidized lipids are cleared out by macrophage cells, but the lipids themselves are very toxic to cells and promote apoptosis (cell death)," Dr. Miyazaki said. "Therefore AIM production is a self-defense mechanism for macrophage cells, but interestingly, is in turn detrimental for the body."

Atherosclerosis is a contributing factor to a number of cardiovascular diseases ?the No. 1 cause of death among people in the United States. It is also highly associated with other risk factors such as smoking, obesity and diets high in fat and cholesterol.


'"/>

Source:University of Texas Southwestern Medical Center at Dallas


Related biology news :

1. DNA Molecules Used To Assemble Nanoparticles
2. Duke Chemists Isolating Individual Molecules Of Toxic Protein In Alzheimers, Parkinsons Disease
3. Successful Test Of Single Molecule Switch Opens The Door To Biomolecular Electronics
4. Touching Molecules With Your Bare Hands
5. Team Invents Device For Weighing Individual Molecules
6. Missing Receptor Molecule Causes Tumor Growth
7. Molecule by molecule, new assay shows real-time gene activity
8. Molecule does more than slice and dice RNA
9. Molecules in blood foretell development of preeclampsia
10. Molecule that destroys bone also protects it, new research shows
11. Bound for destruction: Ubiquitination protects against improper Notch signaling
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/2/2016)... 2016   SoftServe , a global digital ... an electrocardiogram (ECG) biosensor analysis system for continuous ... asset. The smart system ensures device-to-device communication between ... and mobile devices to easily ,recognize, and monitor ... vehicle technology advances, so too must the security ...
(Date:11/29/2016)... BioDirection, a privately held medical device company developing novel ... concussion and other traumatic brain injury (TBI), announced today ... the U.S. Food and Drug Administration (FDA) to review ... meeting company representatives reviewed plans for clinical development of ... a planned pilot trial. "We are ...
(Date:11/28/2016)... , Nov. 28, 2016 ... a rate of 16.79%" The biometric system market ... grow further in the near future. The biometric system ... billion in 2022, at a CAGR of 16.79% between ... system, integration of biometric technology in smartphones, rising use ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... Spain , Dec. 8, 2016  Anaconda BioMed ... the development of the next generation neuro-thrombectomy system for ... appointment of Tudor G. Jovin, MD to join its ... serve as a strategic network of scientific and clinical ... the development of the ANCD BRAIN ® to ...
(Date:12/8/2016)... ... December 08, 2016 , ... Microbial genomics ... Awards. uBiome is one of just six company finalists in the Health & ... to uBiome, companies nominated as finalists in this year’s awards include Google, SpaceX, ...
(Date:12/8/2016)... , Dec. 8, 2016 Soligenix, Inc. ... company focused on developing and commercializing products to treat ... announced today that it will be hosting an Investor ... ET on the origins of innate defense regulators (IDRs) ... review of oral mucositis and the recently announced and ...
(Date:12/8/2016)... Eutilex Co. Ltd. today announced that it ... A financing. This financing round included participation from DS ... Bio Angel. This new funding brings the total capital ... since its founding in 2015. The ... commercialization of its immuno-oncology programs, expand its R&D capabilities ...
Breaking Biology Technology: