Navigation Links
Molecular models advance the fight against malaria

Research from Dartmouth Medical School, demonstrating how malaria parasites form mutations that make them stubbornly resistant to drug therapy, may hold the key to a new treatments for a disease that afflicts more than half a billion people worldwide.

The scientists developed disease models using yeast and successfully introduced five mutations that make malaria resistant to the anti-malarial drug, atovaquone. The study, featured as the cover story of the April 29 Journal of Biological Chemistry, paves the way for using these models to test new drugs that could suppress malaria's ability to mutate against current therapy. "This is the first quantitative explanation for malaria's drug resistance," said Dr. Bernard Trumpower, professor of biochemistry at Dartmouth Medical School and head of the study. "In addition to confirming the belief that the resistance was due to these mutations, we have created a practical research tool to design new, improved versions of the drug using these resistant strains."

Malaria, transmitted by Plasmodium falciparum, a parasite carried by mosquitoes, has developed resistance to almost every anti-malarial drug introduced in the past 30 years. Although atovaquone is one of the most recent drugs on the market, there is significant evidence that malaria parasites are quickly developing resistance to that drug as well. According to WHO estimates, 40% of the world's population are currently at risk of the disease and approximately 2 million people, mostly children, are killed by malaria annually worldwide. Today marks Africa Malaria Day, organized to promote awareness of the disease in a country where a child is killed every 30 seconds by malaria.

Investigating ways to counter the mutations and sustain the efficacy of anti-malarial drugs, Trumpower and his colleagues continued their work on previous studies using yeast enzymes to explore atovaquone resistance. It is not possible to grow enough malaria parasites to isola te and study the respiratory enzyme cytochrome bc1 complex, which the parasites need to live and multiply. A protein subunit of the bc1 complex is where the malaria parasite mutates to counter anti-malarial drug therapies. Yeast is an effective resource because it can be safely grown in large quantities and can be easily modified to take on the qualities of more dangerous pathogens, without risking human infection.

When the researchers genetically transferred mutations into the yeast surrogates, the yeast acquired resistance to atovaquone just as the malaria parasites had done. The team was then able to apply computerized modeling techniques to illustrate exactly how the drug interacted with the cytochrome bc1 complex ?the respiratory enzyme the parasites need to live and multiply -- on a molecular level. With this new understanding of how the parasites were able to counter the effects of atovaquone, researchers can now design new anti-malarial drugs with features making the appearance of resistance more unlikely.

"Within the next 3-5 years, we hope to develop a new drug that will finally empower us to treat this terrible disease," said Trumpower.

Dartmouth Medical School co-authors of the paper are Dr. Jacques Kessl, research associate in biochemistry, Kevin Ha, Anne Merritt and Benjamin Lange. Other co-authors are Dr. Brigitte Meunier and Philip Hill from the Wolfson Institute for Biomedical Research in London and Dr. Steven Meshnick from the University of North Carolina, Chapel Hill.


'"/>

Source:Dartmouth Medical School


Related biology news :

1. Molecular biology fills gaps in knowledge of bat evolution
2. Molecular machine may lead to new drugs to combat human diseases
3. Molecular Motors Cooperate In Moving Cellular Cargo, Study Shows
4. Molecular fossils uncover link between viruses and the immune system
5. Molecular thermometers on skin cells detect heat and camphor
6. Molecular messengers perform a crucial role in the ability of injured nerve cells to heal themselves
7. Molecular steps involved in the creation of gene-silencing microRNAs identified
8. Molecular miners find pain relief drugs from the sea
9. Molecular mechanism of feather formation found
10. Molecular trigger for Huntingtons disease found
11. Molecular Partners Required For Appropriate Neuronal Gene Repression
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/14/2017)... , June 15, 2017  IBM (NYSE: IBM ) is ... tech event dedicated to developing collaboration between startups and global ... June 15-17. During the event, nine startups will showcase the ... in various industries. France ... international market, with a 30 percent increase in the number ...
(Date:5/6/2017)... , May 5, 2017 RAM ... announced a new breakthrough in biometric authentication based ... quantum mechanical properties to perform biometric authentication. These new ... semiconductor material created by Ram Group and its ... entertainment, transportation, supply chains and security. Ram Group ...
(Date:4/17/2017)... Florida , April 17, 2017 NXT-ID, ... technology company, announces the filing of its 2016 Annual Report on ... and Exchange Commission. ... on Form 10-K is available in the Investor Relations section of ... as on the SEC,s website at http://www.sec.gov . ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017 ... London (ICR) and University of ... prognostic tool to risk-stratify patients with multiple myeloma (MM), in ... nine . The University of Leeds ... by Myeloma UK, and ICR will perform the testing services ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... compared the implantation and pregnancy rates in frozen and fresh in vitro ... of progesterone and maternal age to IVF success. , After comparing the results ...
(Date:10/10/2017)... (PRWEB) , ... October 10, 2017 , ... San Diego-based ... of its corporate rebranding initiative announced today. The bold new look is part ... as the company moves into a significant growth period. , It will also expand ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the second time ... US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to Washington, D.C. ... US2020. , US2020’s mission is to change the trajectory of STEM education in ...
Breaking Biology Technology: