Navigation Links
Molecular messengers perform a crucial role in the ability of injured nerve cells to heal themselves

Weizmann Institute findings might advance search for new therapies for injured nerve fibers. Long distance messengers star in many heroic tales, perhaps the most famous being the one about the runner who carried the news about the victory of the Greeks over the Persians in the fateful battle of Marathon. A team of researchers at the Weizmann Institute of Science has now discovered how molecular messengers perform a crucial role in the ability of injured nerve cells to heal themselves.

A nerve cell has a cell body and a long extension, called an axon, which in humans can reach up to one meter in length. Nerve cells belonging to the peripheral nervous system can regrow when their axons are damaged. But how does the damaged axon inform the cell body that it must start producing vital proteins for the healing? That's precisely where the molecular messengers, proteins called Erk-1 and Erk-2, enter the picture. When the axon is injured, these proteins bind to molecules of phosphorus. In this phosphorylated state, they can communicate to command centers in the cell, transmitting a message that activates certain genes in the cell body, which then manufactures proteins that are vital for the healing of the injured axon. The problem is that the messengers must transmit their phosphorus message over a great distance along the axon, and in the course of this arduous journey can easily lose their phosphorus en route.

Dr. Michael Fainzilber and graduate students Eran Perlson and Shlomit Hanz of the Weizmann Institute's Biological Chemistry Department found that the Erk messengers, together with their phosphorus message, bind to a special molecule called vimentin, which protects them from dismantling or loss of the phosphorus. Vimentin links up to motor proteins that carry the message along the axon, and thanks to this linkage and protection, the messengers can safely transmit their message, thus bringing the injured axon's call for help to the cell body. The study will be published in the March 3'rd issue of Neuron. The scientists hope that these findings might advance the future search for new therapies for injured nerve fibers.

###

The research team also included Prof. Rony Seger of the Biological Regulation Department, Prof. Michael Elbaum of the Materials and Interfaces Department, graduate students Keren Ben Yaakov and Yael Segal-Ruder of the Biological Chemistry Department, and postdoctoral fellow Dr. Daphna Frenkiel-Krispin of the Materials and Interfaces Department.

Dr. Michael Fainzilber's research is supported by the Y. Leon Benoziyo Institute for Molecular Medicine; Mr. and Mrs. Alan Fischer, Larchmont, NY; the Abisch Frenkel Foundation for the Promotion of Life Sciences; the Irwin Green Alzheimer's Research Fund and the Buddy Taub Foundation.

Dr. Fainzilber is the incumbent of the Daniel E. Koshland Sr. Career Development Chair.


'"/>

Source:Weizmann Institute


Related biology news :

1. Molecular biology fills gaps in knowledge of bat evolution
2. Molecular machine may lead to new drugs to combat human diseases
3. Molecular Motors Cooperate In Moving Cellular Cargo, Study Shows
4. Molecular models advance the fight against malaria
5. Molecular fossils uncover link between viruses and the immune system
6. Molecular thermometers on skin cells detect heat and camphor
7. Molecular steps involved in the creation of gene-silencing microRNAs identified
8. Molecular miners find pain relief drugs from the sea
9. Molecular mechanism of feather formation found
10. Molecular trigger for Huntingtons disease found
11. Molecular Partners Required For Appropriate Neuronal Gene Repression
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/24/2016)... care by providing unparalleled technology to leaders of the medical imaging industry.  As such, ... to the range of products distributed by Ampronix. Photo - http://photos.prnewswire.com/prnh/20160524/371420 ... ... ... With ...
(Date:5/3/2016)... May 3, 2016  Neurotechnology, a provider of ... MegaMatcher Automated Biometric Identification System (ABIS) , a ... projects. MegaMatcher ABIS can process multiple complex biometric ... combination of fingerprint, face or iris biometrics. It ... and MegaMatcher Accelerator , which have ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... ... and Mold) microbial test has received AOAC Research Institute approval 061601. , “This ... introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the ... at the Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application ... team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our ...
(Date:6/23/2016)... NEW YORK , June 23, 2016 ... the trading session at 4,833.32, down 0.22%; the Dow Jones ... the S&P 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ... BIND Therapeutics Inc. (NASDAQ: BIND ). Learn more ...
(Date:6/23/2016)... June 23, 2016 ReportsnReports.com ... report to its pharmaceuticals section with historic and ... and much more. Complete report on ... pages, profiling 15 companies and supported with 261 ... http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . The Global Cell ...
Breaking Biology Technology: