Navigation Links
Model identifies genes that induce normal skin cells to become abnormal

Northwestern University researchers have developed a novel, three-dimensional model that allows scientists to observe how interacting with the microenvironment of metastatic melanoma cells induces normal skin cells to become similar to aggressive cancer cells that migrate and spread throughout the body.

The model, developed by Mary J. C. Hendrix and colleagues at Children's Memorial Research Center, consists of a three-dimensional collagen matrix preconditioned by malignant melanoma cells. Hendrix is president and scientific director of the Children's Memorial Research Center, professor of pediatrics at Northwestern University Feinberg School of Medicine and a member of the executive committees of The Robert H. Lurie Comprehensive Cancer Center and the Center for Genetic Medicine at Northwestern University.

The model was described in an article in the Nov. 15 issue of Cancer Research.

"Our findings offer new insights into the influence of the tumor cell microenvironment on the transformation of normal skin cells, as well as on genetic triggering mechanisms and signaling pathways that could be targeted for novel therapeutic strategies to inhibit the spread of melanoma," Hendrix said.

Metastatic cancer cells are characterized by increased tumor cell invasion and migration, as well as an undifferentiated, or "plastic," nature.

The Hendrix lab has hypothesized that this poorly differentiated cell type serves as an advantage to aggressive cancer cells by enhancing their ability to metastasize virtually undetected by the immune system. The group's current study tested the hypothesis that the microenvironment of metastatic melanoma cells could induce benign skin cells to become cancer-like.

The researchers seeded a particularly aggressive form of human metastatic melanoma cells onto a three-dimensional collagen matrix and allowed the cells to precondition the microenvironment for several days. The malignant melanoma cells were removed and the matrix was left intact.

Then, normal human skin cells were seeded onto the melanoma-preconditioned matrix and were allowed to remain for several days.

After this period, the previously normal cells seeded onto the matrix preconditioned by the metastatic melanoma were reprogrammed to express genes (produce specific gene proteins) associated with a highly plastic cell type similar to the aggressive melanoma cells used in the study.

Removal of the "transdifferentiated" skin cells from the melanoma microenvironment caused the cells to revert to their original appearance.

"There were no significant genetic changes between normal skin cells grown on an untreated matrix and those exposed to a matrix preconditioned by human metastatic melanoma cells, further supporting the hypothesis that "epigenetic" induction of changes in skin cell gene expression is directly related to exposure to the metastatic microenvironment," the authors said.

Hendrix's co-researchers on the study were Elizabeth A. Seftor; Kevin M. Brown; Lynda Chin; Dawn A. Kirshmann; William W. Wheaton; Alexei Protopopov; Bin Feng; Yoganand Balagurunathan; Jeffrey M. Trent; Brian J. Nickoloff; and Richard E. B. Seftor, from Northwestern University; Harvard Medical School; Tgen; and Loyola University.


'"/>

Source:Northwestern University


Related biology news :

1. Study Models Impact Of Anthrax Vaccine
2. Research Using Mouse Models Reveals A Novel Key Player In The Initiation Of Colon Cancer
3. Asleep in the deep: Model helps assess ocean-injection strategy for combating greenhouse effect
4. Study identifies predictors of HIV drug resistance in patients beginning triple therapy
5. New lab technique identifies high levels of pathogens in therapy pool
6. Study identifies gene in mice that may control risk-taking behavior in humans
7. Researcher at UGA College of Veterinary Medicine identifies new way of combating viral diseases
8. U. of Colorado researcher identifies tracks of swimming dinosaur in Wyoming
9. New study identifies key gene in development of connections between brain and spinal cord
10. New HIV study identifies high-risk subgroups of adolescents
11. Research identifies protein in mice that regulates bone formation
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/16/2016)... The global Biometric ... USD 1.83 billion by 2024, according to a ... proliferation and increasing demand in commercial buildings, consumer ... the market growth.      (Logo: ... of advanced multimodal techniques for biometric authentication and ...
(Date:6/9/2016)... 2016  Perkotek an innovation leader in attendance control systems is proud to announce ... for employers to make sure the right employees are actually signing in, and to ... ... ... ...
(Date:6/7/2016)... 7, 2016  Syngrafii Inc. and San Antonio ... that includes integrating Syngrafii,s patented LongPen™ eSignature "Wet" ... collaboration will result in greater convenience for SACU ... while maintaining existing document workflow and compliance requirements. ... Highlights: ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ("Biorem" ... by its major shareholders, Clean Technology Fund I, LP ... States based venture capital funds which together ... (on a fully diluted, as converted basis), that they ... their entire equity holdings in Biorem to TUS Holdings ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... will join the faculty of the University of North Carolina Kenan-Flagler Business ... strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... While the ... such as the Cary 5000 and the 6000i models are higher end machines that ... the height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
Breaking Biology Technology: