Navigation Links
Minimal genome should be twice the size, study shows

The simplest bacteria need almost twice as many genes to survive than scientists first believed, according to new research published in Nature (30 March 2006).

Bacteria are some of the simplest forms of life and have been studied by scientists trying to identify the smallest collection of genes ?or minimal genome ?that is needed for maintaining life.

Traditionally scientists have done this by removing, or 'knocking out', a series of individual genes from a bacterial genome to see what effect this has on its ability to survive.

They can then infer which genes are essential to the organism, and which are not, to work out which are needed for the minimal genome.

However this knock out approach wrongly removes many of the genes that are essential to the survival of bacteria, according to researchers from Heidelberg (Germany), Manchester (UK), Budapest (Hungary) and Bath (UK).

The researchers made this discovery after developing a new approach to genome modelling which, given the organism's evolutionary history and knowledge of its surrounding environment, allows them to predict which genes a bacterium's genome should contain.

"Previous attempts to work out the minimal genome have relied on deleting individual genes in order to infer which genes are essential for maintaining life," said Professor Laurence Hurst from the Department of Biology and Biochemistry at the University of Bath.

"This knock out approach misses the fact that there are alternative genetic routes, or pathways, to the production of the same cellular product.

"When you knock out one gene, the genome can compensate by using an alternative gene.

"But when you repeat the knock out experiment by deleting the alternative, the genome can revert to the original gene instead.

"Using the knock-out approach you could infer that both genes are expendable from the genome because there appears to be no deleterious effect in both experim ents.

"In fact, because there are alternative pathways to the same product, by removing either of the genes you make the other essential for survival; each gene deletion reduces the available space for further reduction of the genome.

"Including these alternative pathways into the minimal genome almost doubles its size."

The researchers have developed a way of predicting bacterial genome content using two bacteria that have evolved from E.coli.

Buchnera and Wigglesworthia live inside insects in a symbiotic relationship where they provide essential molecules for their hosts in return for essential basic foods.

Since evolving from E.coli, the Buchnera and Wigglesworthia genomes have lost some of the genes that they would otherwise need for survival.

Using computer modelling and knowledge of the present day ecology of the bacteria the researchers were able to model this process of gene loss.

They accurately predicted about 80 per cent of the gene content of the two bacteria, including some of the non-obvious features of their genomes.

"Far from being a cause for disease, the insects need these bacteria to supply them with essential nutrients," said Professor Hurst.

"In these relatively cosy conditions, Buchnera and Wigglesworthia have lost some of the genes they would otherwise need to produce some of the basic molecules they need to survive.

"Being able to predict the content of a genome based on the ecology of an organism is useful because we could potentially use it to predict gene content at different stages of an organism's evolution.

"This will help us understand more about how the genome of different organisms have evolved over long periods of time and should also inform attempts by experimentalists to construct minimal genomes by gradual evolution in the laboratory."

Similar methods might also be used to build a blueprint of a bacterium with desired metabolic pro perties, for example identifying which genes would a bacterium need to efficiently digest specific waste chemicals.

The research has been supported by the Hungarian Scientific Research Fund, EMBO, the Human Frontier Science Program, DFG and the Biotechnology and Biological Sciences Research Council.

'Chance and necessity in the evolution of minimal metabolic networks' will be published in Nature on 30 March 2006.


'"/>

Source:University of Bath


Related biology news :

1. Minimally Invasive Cancer Treatments Highlighted
2. Man and mouse share genome structures
3. Whole genome fine map of rice completed
4. Study finds more than one-third of human genome regulated by RNA
5. A bacterial genome reveals new targets to combat infectious disease
6. Scientists decipher genome of fungus that can cause life-threatening infections
7. Highly adaptable genome in gut bacterium key to intestinal health
8. Fleshing out the genome
9. Agilent Technologies new genome analysis technology set to accelerate Australia fight against mesothelioma
10. wFleaBase: the Daphnia genome database
11. NHGRI targets 12 more organisms for genome sequencing
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/23/2017)... 23, 2017 Research and Markets has announced ... & Trends - Industry Forecast to 2025" report to their ... The ... CAGR of around 8.8% over the next decade to reach approximately ... the market estimates and forecasts for all the given segments on ...
(Date:3/20/2017)... PMD Healthcare announces the release of its ... System (WMS), a remote, real-time lung health monitoring and ... is a Medical Device, Digital Health, and Chronic Care ... innovative solutions that empower people to improve their healthcare ... developed the first ever personal spirometer, Spiro PD, which ...
(Date:3/7/2017)... BRIGHTON, England , March 7, 2017 Brandwatch ... been chosen by The Prince,s Trust to uncover insights ... insights across The Trust. The UK,s leading youth charity ... track social campaign results and get a better understanding of the ... ...
Breaking Biology News(10 mins):
(Date:4/19/2017)... FRANCISCO, Calif. , April 19, 2017 /PRNewswire/ ... VCYT ) today announced that it will report ... of market on Wednesday, May 3, 2017. Following the ... webcast at 4:30 p.m. Eastern Time to discuss the company,s ... live webcast and subsequent replay may be accessed ...
(Date:4/18/2017)... ... April 18, 2017 , ... ... conductivity readings to concentration levels and vice-versa. , One of the key applications ... strength in concentration control or monitoring. The principle of this analytical method is ...
(Date:4/18/2017)... , ... April 18, 2017 , ... For a historic ... co-members in the VaxCorps vaccine consortium, were named one of the top two Clinical ... the inception of this category; winning the award four times previously, and first runner ...
(Date:4/18/2017)... ... 18, 2017 , ... Cancer diagnostics and pathology workflow solution ... the role of Chief Medical Officer (CMO) – Precision Medicine, overseeing strategic planning ... considered a visionary leader in precision medicine, and he has extensive experience in ...
Breaking Biology Technology: