Navigation Links
McBride shows DNA detective work with paper-eating bacteria that 'glide'

The eco-friendly fuel ethanol is usually made from grain, but the U.S. Department of Energy (DOE) would like to find other renewable materials that will be cost-effective alternatives, such as paper pulp, sawdust, straw and grain hulls.

A UWM professor recently helped DOE do just that by analyzing the DNA of a bacterium that can break down cellulose, the major structural component of plants that is also found in forestry by-products (including paper) and waste feedstocks.

Mark McBride, a professor of biological sciences, worked with DOE's Joint Genome Institute and scientists at Los Alamos National Laboratory to examine the genes of Cytophaga hutchinsonii that are responsible for the organism's ability to digest cellulose ?the first step in the carbohydrate's conversion into ethanol.

Sequencing the genome of C. hutchinsonii provides what McBride calls a "parts list" for the microbe, allowing scientists to explore how bacteria use these parts to build and run their key functions ?some of which have potential uses in bioenergy.

The genome has revealed surprises, he says.

"Microorganisms typically require two kinds of enzymes to efficiently break down cellulose," he says. "One type cuts the long carbohydrate molecule through the middle, while another chews small pieces from the ends."

Not so with C. hutchinsonii. Although it efficiently digests cellulose, in DNA analysis it appears to be lacking one of the usual enzymes, suggesting that it may use either a novel strategy or novel enzymes.

The information McBride reports could help DOE devise mixtures of microorganisms or enzymes that will more efficiently convert cellulose into glucose, and finally into ethanol.

McBride's interest in C. hutchinsonii goes beyond its possible value in bioenergy.

What really intrigues him is that it's a "gliding bacterium," able to crawl rapidly over surfaces by an unknown mechanism, which is the main subject of McBride's research with another glider called Flavobacterium johnsoniae. The two microbes are not closely related.

"You are more closely related to a fruit fly than these two organisms are to each other," he says.

However, from analysis of genes from the two bacteria, McBride suspects that they use the same basic machinery to move.

And there may be another connection. F. johnsoniae doesn't eat cellulose, but it is able to digest a similar carbohydrate polymer, chitin. Like cellulose, chitin, which is found in the hard shells of lobsters and insects, is also difficult to break down.

McBride hypothesizes that digestion of cellulose and chitin may also be linked to cell movement, or motility.

"Loss of motility results in loss of ability to digest chitin," he says. "This suggests that motility and digestion of some carbohydrate polymers may be connected in both gliding microbes."

McBride and his students have used F. johnsoniae to study the motility of gliding bacteria for more than a decade. They cloned "mutants" of F. johnsoniae that are unable to move, and then attempted to "repair" them by inserting certain pieces of DNA.

In this way, they have uncovered nearly all the genetic components that propel the cells. It has been a long process. A decade ago, his lab had found one protein involved. He now knows of 24, and he doesn't expect to find many more.

Until recently, McBride was not able to image the bacteria closely enough to see the structures involved in movement. Instead, he bonded latex spheres to the surface of F. johnsoniae cells and observed that they moved in all directions around the cell's perimeter.

"The cell wall appears to have a series of moving conveyer belts," he says.

He also has learned that some of the motility proteins ("parts") act at the surface of the cell, and he thinks some are involved in forming nearly invisible filaments around the perimeter of t he cell.

These filaments were recently imaged in collaboration with Sriram Subramaniam and Jun Liu at the National Institutes of Health by cryo-electron tomography.

"The filaments may be the cell's 'tires,' and there are different kinds," McBride says. "They are designed to help the organism move over a variety of surfaces, like an all-terrain vehicle."

Besides providing movement, McBride says the filaments also may be needed to move the cellulose and chitin molecules to certain sites where they can be digested or taken into the cell.

McBride hopes the complete genome for C. hutchinsonii will yield other clues to the interconnections among gliding bacteria. He is now collaborating with DOE to sequence the entire genome of F. johnsoniae, which will allow a full comparison of the genes of the two microorganisms.


Source:University of Wisconsin - Milwaukee

Related biology news :

1. Genome of deadly amoeba shows surprising complexity, evidence of lateral gene transfer
2. “Nano-scissors?laser shows precise surgical capability
3. Clam embryo study shows pollutant mixture adversely affects nerve cell development
4. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
5. Study shows nanoshells ideal as chemical nanosensors
6. Gene vaccine for Alzheimers disease shows promising results
7. Flocking together: Study shows how animal groups find their way
8. New drug shows promise as powerful anticancer agent
9. Loves all in the brain: fMRI study shows strong, lateralized reward, not sex, drive
10. Test for early detection of prostate cancer shows promise
11. Mouse gene shows new mechanism behind cardiac infarction in man
Post Your Comments:

(Date:11/4/2015)... , November 4, 2015 ... market report published by Transparency Market Research "Home Security Solutions ... and Forecast 2015 - 2022", the global home security solutions ... bn by 2022. The market is estimated to expand ... from 2015 to 2022. Rising security needs among customers ...
(Date:10/29/2015)... 2015  Rubicon Genomics, Inc., today announced an ... its DNA library preparation products, including the ThruPLEX ... Plasma-seq kit. ThruPLEX Plasma-seq has been optimized for ... libraries for liquid biopsies--the analysis of cell-free circulating ... in cancer and other conditions. Eurofins Scientific is ...
(Date:10/27/2015)... 2015 Munich, Germany ... technology (ASGM) automatically maps data from mobile eye tracking ... , so that they can be quantitatively analyzed with ... Munich, Germany , October 28-29, 2015. SMI,s Automated ... mobile eye tracking videos created with SMI,s Eye ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... (PRWEB) , ... November 25, 2015 , ... ... and the Organization of Black Aerospace Professionals (OPBAP) has been formalized with the ... other AMA team leaders met with OPBAP leaders Capt. Karl Minter and Capt. ...
(Date:11/25/2015)... ... November 25, 2015 , ... ... featured on AngelList early in their initial angel funding process. Now, they are ... individuals looking to make early stage investments in the microbiome space. In ...
(Date:11/24/2015)... 2015 Cepheid (NASDAQ: CPHD ) today ... following conference, and invited investors to participate via webcast. ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ... New York, NY      Tuesday, December 1, 2015 ...
(Date:11/24/2015)... ... November 24, 2015 , ... Copper is ... it is bound to proteins, copper is also toxic to cells. With a ... Polytechnic Institute (WPI) will conduct a systematic study of copper in the bacteria ...
Breaking Biology Technology: