Navigation Links
Mayo Clinic researchers discover cancer cells may move via wave stimulation

Mayo Clinic researchers have uncovered a new cellular secret that may explain how certain cancers move and spread -- a feature of cancers that makes treatment especially difficult. If the mechanism that drives cancer movement -- also called metastasis -- can be understood well enough to manipulate it, new and better treatments can be developed for patients with metastatic cancers.

Significance of the Mayo Clinic Research

The Mayo researchers focused on odd protrusions observable by microscope on the surface of certain cancer cells: circular waves. Until now, no one has fully understood the function of these waves. The Mayo findings in the current edition of Cancer Research http://cancerres.aacrjournals.org/current.shtml are the first to show one role the waves play. They selectively round up activated growth-promoting proteins from the cell surface and take them to the interior of the cell. Under normal conditions, this process would help terminate signals from these growth-promoting proteins. However, in cancer cells it appears that either these waves may not function properly, or that the internalized proteins may remain active longer, which allows them to "instruct" a cell to acquire cancerous traits such as excessive growth and invasive movement that constitute metastasis. These waves are important for helping to keep these cancer-growth commands at bay.

Studying human pancreatic tumor cells, the Mayo researchers found that the waves store up to half the activated Epidermal Growth Factor Receptors (EGFR) from the surface of the cell and take this cache to the interior of the cells. This is important for understanding cancer because aberrant activation of EGFR can promote the excessive growth typical of cancers.

"These findings have broad implications toward the general understanding of how specific processes in the wave may affect such things as cell growth, cell movement and metastasis," explains Mark McNiven, Ph.D., the lead researcher on the Mayo Clinic team. "Our work provides new insights into a novel mechanism by which cells can internalize growth factor information. Understanding this process is the first step toward one day halting it, preventing it or reversing it therapeutically."Why Movement Matters

Cell growth and movement are vital topics in cancer research because cancer is a disease of uncontrolled cell growth in which the normal balance between growth promotion and growth inhibition is disrupted. Epidermal Growth Factor (EGF) and the EGFR to which it homes and docks are a hot topic in cancer research because EGF promotes growth through binding and activating its receptor and certain tumors exhibit elevated levels of EGFR. In addition, activated EGFR have been implicated in the development and spread of several human cancers, including cancers of the colon, ovary, breast and lung.

Wave Basics

Waves are circular ruffled surface structures on the exterior plasma membrane of a cell that can be observed through a conventional light microscope. They form in response to stimulation from EGF and exist for 10 to 20 minutes before disappearing. Waves intrigue researchers because wave-based internalization of activated EGFR to the interior of the cell was a previously unknown mechanism. The wave pathway appears to be a parallel pathway vital for transmitting and regulating normal cellular communication. Waves occur less often in certain tumor cells, indicating they may play a role in modulating or terminating cancer-promoting signals. Persistent cancer-promoting signals in cells lacking waves could subsequently allow them to be more motile and invasive. Waves also are important for cell movement -- at least in normal cells -- by actively reorganizing some of the cellular infrastructure at the leading edge of a cell allowing the cell to form a pliable footlike structure (lamellipod ia). Previous work by this Mayo Clinic team was the first to correlate the formation of lamellipodia with wave-induced reorganization within a cell.


'"/>

Source:Mayo Clinic


Related biology news :

1. Mayo Clinic Researchers Create Obedient Virus; First Step To Use Measles Virus Against Cancer
2. Chronic Sinus Infection Thought To Be Tissue Issue, Mayo Clinic Scientists Show Its Snot
3. Clinical trial to test stem cell approach for children with brain injury
4. Mayo Clinic collaboration discovers protein amplifies DNA injury signals
5. Mayo Clinic researchers challenge sepsis theory
6. Mayo Clinic study finds two genes predict outcome for breast cancer patients
7. Mayo Clinic Cancer Center: Harnessing the measles virus to attack cancer
8. Mayo Clinic collaboration mining of ancient herbal text leads to potential new anti-bacterial drug
9. Mayo Clinic study suggests that a central nervous system viral infection can lead to memory deficits
10. Mayo Clinic: Gene expression profiling not quite perfected in predicting lung cancer prognosis
11. NYU researchers simulate molecular biological clock
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/22/2016)... ANGELES , June 22, 2016 /PRNewswire/ ... identity management and verification solutions, has partnered ... edge software solutions for Visitor Management, Self-Service ... provides products that add functional enhancements ... partnership provides corporations and venues with an ...
(Date:6/16/2016)... The global Biometric ... USD 1.83 billion by 2024, according to a ... proliferation and increasing demand in commercial buildings, consumer ... the market growth.      (Logo: ... of advanced multimodal techniques for biometric authentication and ...
(Date:6/7/2016)... 2016  Syngrafii Inc. and San Antonio Credit ... includes integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution ... will result in greater convenience for SACU members ... maintaining existing document workflow and compliance requirements. ... Highlights: ...
Breaking Biology News(10 mins):
(Date:12/5/2016)... , Dec. 5, 2016 /PRNewswire/ - Resverlogix Corp. ... the independent Data and Safety Monitoring Board (DSMB) ... high-risk cardiovascular disease (CVD) patients has completed a ... study should continue as planned without any modifications. ... that no safety or efficacy concerns were identified. ...
(Date:12/4/2016)... ... December 02, 2016 , ... A proposed five-year extension for ... funded research and development is welcome news for the photonics community, say leaders ... As part of the National Defense Authorization Act (NDAA) compromise agreement finalized today ...
(Date:12/2/2016)... , Dec. 2, 2016 More than $4.3 million ... Helix Medals dinner ( DHMD ). The gala was held at ... New York City and honored Alan Alda ... respectively, to health and medicine and the public understanding of ... in 2006, the event has raised $40 million for the ...
(Date:12/2/2016)... (PRWEB) , ... December 01, 2016 , ... ACEA Biosciences, ... its Phase I/II clinical trials for AC0010 at the World Conference on Lung Cancer ... providing an update on the phase I/II clinical trials for AC0010 in patients with ...
Breaking Biology Technology: