Navigation Links
Master genetic switch found for chronic pain

In experiments with mice, researchers have found that eliminating what appears to be a master genetic switch for the development of pain-sensing neurons knocks out the animals' response to "neuropathic pain." Such pain is abnormal pain that outlasts the injury and is associated with nerve and/or central nervous system changes. The animals rendered deficient in the gene, called Runx1, also showed lack of response to discomfort caused by heat and cold and inflammation. The researchers said that their findings, reported in the February 2, 2006, issue of Neuron, could have implications for the design of improved pain therapies.

In their experiments, Qiufu Ma and colleagues studied the Runx1 gene because past research had shown it to code for a protein "transcription factor," which is a master regulator of multiple genes. Runx1 is one of a group of proteins that are key players involved in transmitting external sensory information, like pain and the perception of movement, to the spinal cord. In two other related papers in the same issue, Silvia Arber and colleagues and Tom Jessell and colleagues examine related aspects of the biological importance underlying the Runx transcription factors.

Runx1 was known to be expressed only in sensory nerve cells called "nociceptive" cells, involved in sensing pain. Such pain-sensing cells function by translating painful stimuli into nerve signals via specialized pores called "ion channels" in the neurons, as well as specialized receptors. The researchers' studies of Runx1 in these cells revealed that during embryonic development, the gene is characteristically expressed in pain-receptor cells involved in neuropathic pain. When they knocked out the gene, they found that the normal development of such specialized nerve cells was impaired. The animals had lost ion channels known to be involved in reacting to painful heat or cold, as well as those involved in pain due to damaged tissue. The researchers also found that th e Runx1-deficient animals showed deficient wiring of certain types of pain neurons.

In key experiments, the researchers measured the Runx1-deficient animals' response to four types of pain--thermal, mechanical, inflammatory, and neuropathic.

The researchers produced a pain response by subjecting the animals' hindpaw to either the cold of acetone or an uncomfortably warm plate (thermal); the uncomfortable prick of a filament (mechanical); an injection of an inflammation-inducing chemical (inflammatory); or nerve damage (neuropathic). They quantified the animals' response by measuring how long the animals lifted or licked their affected paw in response to the treatments.

Ma and his colleagues found that, while the deficient animals showed normal response to mechanical pain, they showed significantly lowered thermal, neuropathic, and inflammatory pain response.

The researchers concluded that while the diverse specialized components of the pain-sensing machinery could be established in a piecemeal fashion, "Our data, however, provide strong evidence that Runx1 is required to specify the receptive properties of a large cohort of nociceptive sensory neurons." They also concluded that the dual functions they discovered for Runx1--controlling specification of sensory neurons and regulating how they target their wiring--"form a genetic basis for the assembly of specific neural circuits for nociceptive information processing.

"Finally, the identification of a core transcriptional control program for many of the ion channels and receptors known to transduce noxious stimuli has intriguing implications for the design of more effective pain therapies," they wrote.


Source:Cell Press

Related biology news :

1. Master gene controls healing of skin in fruit flies and mammals
2. Master regulatory gene found that guides fate of blood-producing stem cells
3. Master planners in brain may coordinate other areas roles in cognitive tasks
4. Master regulatory gene of epithelial stem cells identified
5. Its not all genetic: Common epigenetic problem doubles cancer risk in mice
6. Scientists detect probable genetic cause of some Parkinsons disease cases
7. Mouse brain tumors mimic those in human genetic disorder
8. Scientists identify genetic pathways essential to RNA interference
9. Researchers trace evolution to relatively simple genetic changes
10. Key mechanism in genetic inheritance during cell division identified
11. Scientists identify genetic pathways essential to RNA interference
Post Your Comments:

(Date:11/18/2015)... , Nov. 18, 2015  As new scientific discoveries ... doctors and other healthcare providers face challenges in better ... and patients. In addition, as more children continue to ... patient,s adulthood and old age. John M. ... Children,s Hospital of Philadelphia (CHOP) . --> ...
(Date:11/17/2015)... Paris , qui s,est tenu ... Paris , qui s,est tenu du 17 au ... l,innovation biométrique, a inventé le premier scanner couplé, qui ... même surface de balayage. Jusqu,ici, deux scanners étaient nécessaires, ... digitales. Désormais, un seul scanner est en mesure de ...
(Date:11/16/2015)... Calif. , Nov 16, 2015  Synaptics ... of human interface solutions, today announced expansion of ... TouchView ™ touch controller and display driver ... revolution of smartphones. These new TDDI products add ... TD4100 (HD resolution), TD4302 (WQHD resolution), and TD4322 ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Florida (PRWEB) , ... November 24, 2015 , ... ... biggest event of the year and one of the premier annual events for ... and ran from 8–11 November 2015, where ISPE hosted the largest number of ...
(Date:11/24/2015)... November 24, 2015 --> ... research report "Oligonucleotide Synthesis Market by Product & Services ... Synthesis, Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & Biotech, ... MarketsandMarkets, the market is expected to reach USD 1,918.6 ... at a CAGR of 10.1% during the forecast period. ...
(Date:11/24/2015)... SHPG ) announced today that Jeff ... 27 th Annual Healthcare Conference in New York ... a.m. EST (1:30 p.m. GMT). --> SHPG ) announced ... in the Piper Jaffray 27 th Annual Healthcare Conference in ... 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) ... remaining 11,000 post-share consolidation (or 1,100,000 pre-share consolidation) ... B Warrants") subject to the previously disclosed November ... 2015, which will result in the issuance of ... the issuance of such shares, there will be ...
Breaking Biology Technology: