Navigation Links
Many needles, many haystacks

Most of what happens in cells is the work of machines that contain dozens of molecules, chiefly proteins. With the completion of human and other genomes, researchers now have a nearly complete "parts list" of such machines; what's lacking now is the manual telling where all the pieces go. A new study by scientists at the European Molecular Biology Laboratory (EMBL) promises to answer this question for some of the smallest and trickiest components in the cellular toolbox. Their work appears in the current issue of the Public Library of Science's on-line journal, PLoS Biology.

A protein consists of a sticky string of amino acids which usually folds up because of attractions between some of its atoms. This creates a bundle called a globular domain whose shape and chemistry determine what other molecules can bind to it.

"If we could look at the chemical 'spelling' of a protein and guess what machines it fits into, we'd know a lot more about what happens in cells," says Rob Russell, head of the Heidelberg lab that carried out the current study. "We've made a lot of progress in predicting how globular domains interact with each other. But sometimes a surface on one globular domain will grab a tiny, string-like region of another protein called a linear motif. Finding such motifs and predicting where they fit in is like looking for needles in haystacks."

Or like looking at a line of automobiles and trying to decide which one a bulky motor fits into ?versus trying to find where a tiny screw goes. Linear motifs are so small that it is hard to tell what features allow them to bind to other molecules. Now Victor Neduva, a PhD student in Russell's group, has developed a method to scan molecules and tease out new linear motifs.

"If two or more different proteins share a binding partner, there is often a common motif," Neduva says. "The hard part is finding a 3-to-8 'letter' pattern in a protein sequence that may be thousands of amino acids long."The method Neduva and his colleagues invented draws on large-scale studies of protein binding in the cells of yeast, flies, worms and humans. Those studies have produced parts lists of molecular machines. And the data holds a wealth of information about linear motifs ?if it can be mined.

The scientists distilled all of this information in a series of steps ?discarding parts of the proteins likely to dock via large surfaces, and zooming in on small regions of the remaining molecules that might hold motifs. Then it was up to the computer to scan the sequences for small patterns. The attempt was successful: in the fly data, for example, 26 sets of proteins seemed to be interacting through linear motifs.

"One challenge was to eliminate red herrings, which crop up everywhere when you look for very small patterns," Russell says. "The fact that nine of these motifs were already known was a sign we were on the right trail; we then did follow-up experiments in collaboration with Luis Serrano's group at EMBL to test some of the others."

One prediction, for example, suggested that a linear motif would bind to the fly protein translin. The scientists verified that this happened, then they made subtle changes in the sequence. When these changes stopped the molecules binding, they knew they had a new linear motif.

Now the lab will expand the method; Russell predicts that hundreds of linear motifs remain to be discovered. This has important implications for the study of genetic diseases. "A lot of work has gone into discovering mutations that affect protein binding," he says. "Because linear motifs are so small, every bit of information is crucial, and any change is likely to be disruptive. But so far, because of their size, these motifs have been below the radar of most methods to tie protein structures to disease."


Source:European Molecular Biology Laboratory

Related biology news :

1. Finding Cures For Tropical Diseases: Is Open Source An Answer?
2. Fundamental Finding Yields Insight into Stem Cells, Cancer; Opens Door to Drug Discovery
3. Findings have implications for tracking disease, drugs at the molecular level
4. Finding hidden invaders in a Hawaiian rain forest
5. New Finding May Aid Adult Stem Cell Collection
6. Finding the minds eye
7. Findings advance use of adult stem cells for replacement bone
8. Finding a virus is not all bad news
9. Finding a better way to make biodiesel
10. Finding paves way for better treatment of autoimmune disease
11. Finding the right mix: A biomaterial blend library
Post Your Comments:

(Date:11/19/2015)... , Nov. 19, 2015  Based on its ... & Sullivan recognizes BIO-key with the 2015 Global Frost ... year, Frost & Sullivan presents this award to the ... catering to the needs of the market it serves. ... line meets and expands on customer base demands, the ...
(Date:11/17/2015)... , November 17, 2015 Paris ...   --> Paris from 17 th ... DERMALOG, the biometrics innovation leader, has invented the first combined ... on the same scanning surface. Until now two different scanners ... one scanner can capture both on the same surface. ...
(Date:11/16/2015)... 16, 2015  Synaptics Inc. (NASDAQ: SYNA ... today announced expansion of its TDDI product portfolio ... controller and display driver integration (TDDI) solutions designed ... new TDDI products add to the previously-announced ... (WQHD resolution), and TD4322 (FHD resolution) solutions. All ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... This fall, global software ... events in five states to develop and pitch their BIG ideas to improve health ... state are competing for votes to win the title of SAP's Teen Innovator, an ...
(Date:11/24/2015)... 24, 2015 SHPG ) announced today that ... Piper Jaffray 27 th Annual Healthcare Conference in ... at 8:30 a.m. EST (1:30 p.m. GMT). --> SHPG ... will participate in the Piper Jaffray 27 th Annual Healthcare ... Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ...
(Date:11/24/2015)... 2015  Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced that its Annual ... 11:00 a.m. Israel time, at the law offices ... Street, 36 th Floor, Tel Aviv, Israel . ... and Izhak Tamir to the Board of Directors; , ... , approval of an amendment to certain terms of options granted ...
(Date:11/24/2015)...  Twist Bioscience, a company focused on synthetic ... Bioscience chief executive officer, will present at the ... 2015 at 3:10 p.m. Eastern Time at The Lotte New ... --> --> About Twist ... on Twitter. Sign up to follow our Twitter ...
Breaking Biology Technology: