Navigation Links
Making mice with enhanced color vision

Researchers at the Johns Hopkins School of Medicine and their colleagues have found that mice simply expressing a human light receptor in addition to their own can acquire new color vision, a sign that the brain can adapt far more rapidly to new sensory information than anticipated.

This work, appearing March 23 in Science, also suggests that when the first ancestral primate inherited a new type of photoreceptor more than 40 million years ago, it probably experienced immediate color enhancement, which may have allowed this trait to spread quickly.

"If you gave mice a new sensory input at the front end, could their brains learn to make use of the extra data at the back end?" asks Jeremy Nathans M.D., Ph.D., professor of molecular biology and genetics, neuroscience, and ophthalmology at Hopkins. "The answer is, remarkably, yes. They did not require additional generations to evolve new sight."

Retinas of primates such as humans and monkeys are unique among mammals in that they have three visual receptors that absorb short (blue), medium (green) and long (red) wavelengths of light. Mice, like other mammals, only have two; one for short and one for medium wavelengths.

In the study, the researchers designed a "knock-in" mouse that has one copy of its medium wavelength receptor replaced with the human long wavelength receptor, so both were expressed in the retina. The human receptors were biologically functional in the mice, but the real question was whether the mice could use the new visual information.

To address this question, the researchers used a classic preference test; mice set before three light panels were trained to touch the one panel that appeared to differ from the other two. A correct answer was rewarded with a drop of soy milk.

To circumvent thorny issues related to the subjective nature of color perception -- everyone who has had a discussion as to whether the "green" they see is the same as t he "green" their friend sees can attest to this -- the researchers only tested whether the mice could discriminate among the lights.

"Each photoreceptor absorbs a range of wavelengths, but the efficiency changes with wavelength," Nathans explains. "For example, one photoreceptor might absorb green light only half as efficiently as red light. If an animal had only this type of photoreceptor, then a green light that was twice as bright as a red light would look identical to the red one. But if the animal adds a second photoreceptor with different absorption properties, then by comparing both receptors, the red and green lights could always be distinguished."

Normal mice failed to discriminate yellow versus red lights when the light intensities were set to give equal activation of their middle wavelength receptor. However, mice with both the human long wavelength and the mouse middle wavelength receptors learned to tell the difference, although it took over 10,000 trials to learn to make the distinction.

Nathans suggests that these knock-in mice mimic how our earliest primate ancestors acquired trichromatic vision, color vision based on three receptors. At some point in the past, random mutations created a variant of one receptor gene, located on the X chromosome, producing two different receptor types. Present-day New World (South American) monkeys still use this system, which means that in these monkeys only certain females can acquire trichromatic color vision.

In contrast, among Old World (African) primates such as humans, the two different X chromosome genes duplicated so that each X chromosome now carries the genes for both receptor types, giving both males and females trichromatic color vision.

"You could say that the original primate color vision system, and the one that New World monkeys still use today, is the poor man's -- or to be accurate, poor woman's -- version of color vision," Nathans says.


'"/>

Source:Johns Hopkins Medical Institutions


Related biology news :

1. Making Sure Sacred Sheep Dont Become Extinct
2. Muscle repair: Making a good system better, faster; implications for aging, disease
3. Making plant cells work like miniature factories
4. Making medicine smarter
5. Making a face: A new and earlier marker of neural crest development
6. Mouse with designer liver has enhanced glucose tolerance, insulin response
7. Study finds that nutritionally enhanced rice reduces iron deficiency
8. Researchers report technique for freezing and preserving genetically enhanced pig embryos
9. Fish growth changes enhanced by climate change
10. Scientists genetically engineer tomatoes with enhanced folate content
11. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/23/2016)... March 23, 2016 ... Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender Anbieter ... Unternehmen mit SpeechPro zusammenarbeitet, um erstmals dessen ... wird die Möglichkeit angeboten, im Rahmen mobiler ...
(Date:3/17/2016)... 17, 2016 ABI Research, the leader ... global biometrics market will reach more than $30 ... from 2015. Consumer electronics, particularly smartphones, continue to ... anticipated to reach two billion shipments by 2021 ... Pavlakis , Research Analyst at ABI Research. "Surveillance ...
(Date:3/11/2016)... http://www.apimages.com ) - --> http://www.apimages.com ... at AP Images ( http://www.apimages.com ) - Germany ... produce the new refugee identity cards. DERMALOG will be unveiling this ... Hanover next week.   --> ... to produce the new refugee identity cards. DERMALOG will be unveiling ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... ... 27, 2016 , ... A compact PET scanner called NuPET™ ... (Magnetic Resonance Imaging) in existing third-party MRI systems. PET and MRI are complementary ... subjects. Simultaneous PET/MRI imaging offers a solution to many challenges that face researchers ...
(Date:4/27/2016)... 2016 ReportsnReports.com adds 2016 ... focus on US, EU, China ... the healthcare business intelligence collection of its growing ... report on the Flow Cytometry market spread across ... 282 tables and figures is now available at ...
(Date:4/26/2016)... ... April 26, 2016 , ... Heidelberg Instruments, a ... technology innovation for its Volume Pattern Generator (VPG) line of lithography systems. The ... photomasks as well as a solution for mid volume direct write lithography applications. ...
(Date:4/26/2016)... ... 26, 2016 , ... Seattle based non-profit, The Institute for ... Corporation. The grant will be used to further the scientific research goals of ... http://www.ivsci.org , In accounting the grant to the IVS, Mr. Glenn ...
Breaking Biology Technology: