Navigation Links
Magnetic computer sensors may help study biomolecules

Magnetic switches like those in computers also might be used to manipulate individual strands of DNA for high-speed applications such as gene sequencing, experiments at the National Institute of Standards and Technology (NIST) suggest.

As described in a recent paper,* NIST researchers found that arrays of switches called "spin valves"—commonly used as magnetic sensors in the read heads of high-density disk drives—also show promise as tools for controlled trapping of single biomolecules. The arrays might be used in chip-scale, low-power microfluidic devices for stretching and uncoiling, or capturing and sorting, large numbers of individual biomolecules simultaneously for massively parallel medical and forensic studies—a sort of magnetic random access memory (MRAM) for biosciences.

Spin valves are made by stacking thin layers of materials with different magnetic properties. Their net magnetization can be switched on and off by applying an external magnetic field of sufficient strength to align the electron "spins" in the magnetic layers in the same (on) or opposite (off) directions. NIST researchers made an array of spin valves, each about one by four micrometers in size, patterned on a 200-nanometer-thick silicon nitride membrane in fluid. When the spin valves are turned on, a local magnetic field is created that is strongest near the ends of the magnetic stack below the membrane—a field strong enough to trap nanoscale magnetic particles.

The NIST experiments demonstrated that the spin valves not only can trap magnetic particles, but also can be used as the pivot point for rotating strands of particles when a rotating magnetic field is applied. According to the researchers, these experimental results, combined with computer modeling, suggest that if biomolecules such as proteins or DNA strands were attached to the magnetic particles, the spin-valve array could apply torsional forces strong enough to alter the structure or shape of the bio molecules. The NIST group is now working on a microfluidic chip that will accomplish this electronically, which would be a significant milestone for applications.

Parallel processing of single biomolecules would be a significant advance over existing techniques limited to studying one molecule at a time. Optical tweezers, which use lasers to trap and manipulate biomolecules, tend to be slow and limited in force, and the particles need to be micrometer sized or larger. Existing magnetic tweezers can trap smaller particles and apply torque, but typically require permanent immobilization of biomolecules, which is time consuming and prevents subsequent analysis.


Source:National Institute of Standards and Technology (NIST)

Related biology news :

1. Magnetic probe successfully tracks implanted cells in cancer patients
2. Magnetic system could be key to surgery without scars
3. Supercomputer Dedicated To Bioengineering, Computational Biology Installed
4. Programmable cells: Engineer turns bacteria into living computers
5. Supercomputers to focus brains on AIDS dilemma
6. Designing vaccines by computer
7. Using computers and DNA to count bacteria
8. UNC computer, marine scientists collaborate to predict flow of toxic waters from Katrina
9. NYU chemists use computer simulation to enhance understanding of DNA transcription
10. California computer scientists double volume of data in NIH biotech repository
11. Setting the standard for computer models of life
Post Your Comments:

(Date:11/17/2015)... Paris from 17 th until 19 ... from 17 th until 19 th November 2015. ... invented the first combined scanner in the world which scans ... now two different scanners were required: one for passports and ... the same surface. This innovation is an ideal solution for ...
(Date:11/17/2015)... 2015 Pressure BioSciences, Inc. (OTCQB: PBIO) ("PBI" ... sale of broadly enabling, pressure cycling technology ("PCT")-based sample ... announced it has received gross proceeds of $745,000 from ... (the "Offering"), increasing the total amount raised to date ... closings are expected in the near future. ...
(Date:11/12/2015)... Mass. , Nov. 12, 2015  Arxspan ... Institute of MIT and Harvard for use of ... discovery information management tools. The partnership will support ... both biological and chemical research information internally and ... will be used for managing the Institute,s electronic ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... FAR HILLS, N.J. (PRWEB) , ... November 24, 2015 , ... ... University, as the recipient of the 2016 USGA Green Section Award. Presented annually since ... of golf through his or her work with turfgrass. , Clarke, of ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... ... maintain healthy metabolism. But unless it is bound to proteins, copper is also ... Health (NIH), researchers at Worcester Polytechnic Institute (WPI) will conduct a systematic study ...
(Date:11/24/2015)... India , November 24, 2015 ... a new market research report "Oligonucleotide Synthesis Market by ... Application (PCR, Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, ... 2020", published by MarketsandMarkets, the market is expected to ... Million in 2015, at a CAGR of 10.1% during ...
(Date:11/24/2015)... 2015 --> ... released by Transparency Market Research, the global non-invasive prenatal ... of 17.5% during the period between 2014 and 2022. ... Industry Analysis, Size, Volume, Share, Growth, Trends and Forecast ... market to reach a valuation of US$2.38 bn by ...
Breaking Biology Technology: