Navigation Links
MRSA use amoeba to spread, new research shows

The MRSA 'superbug' evades many of the measures introduced to combat its spread by infecting a common single-celled organism found almost everywhere in hospital wards, according to new research published in the journal Environmental Microbiology.

Scientists from the University of Bath have shown that MRSA infects and replicates in a species of amoeba, called Acanthamoeba polyphaga, which is ubiquitous in the environment and can be found on inanimate objects such as vases, sinks and walls.

As amoeba produce cysts to help them spread, this could mean that MRSA maybe able to be 'blown in the wind' between different locations.

Further evidence from research on other pathogens suggests that by infecting amoeba first, MRSA may emerge more virulent and more resistant to antibiotics when it infects humans.

"Infection control policies for hospitals should recognise the role played by amoeba in the survival of MRSA, and evaluate control procedures accordingly," said Professor Mike Brown from the Department of Pharmacy and Pharmacology at the University of Bath.

"Until now this source of MRSA has been totally unrecognised. This is a non-patient source of replication and given that amoeba and other protozoa are ubiquitous, including in hospitals, they are likely to contribute to the persistence of MRSA in the hospital environment".

"Adding to the concern is that amoebal cysts have been shown to trap pathogens and could potentially be dispersed widely by air currents, especially when they are dry.

"Replication of MRSA in amoeba and other protozoa raises several important concerns for hospital hygiene."

In laboratory tests, the researchers found that within 24 hours of its introduction, MRSA had infected around 50 per cent of the amoeba in the sample, with 2 per cent heavily infected throughout their cellular content.

Evidence with other pathogens suggests that pathogens that emerge from amoeba are more resist ant to antibiotics and more virulent.

"This makes matters even more worrying," said Professor Brown.

"It is almost as though the amoeba act like a gymnasium; helping MRSA get fitter and become more pathogenic".

"In many ways this may reflect how this kind of pathogenic behaviour first evolved. A good example is the bacterium that causes legionnaires disease. Probably it was pathogenic long before humans and other animals arrived on the evolutionary scene. Even today, it has no known animal host".

"The most likely reason is that Legionella and many pathogens learned their pathogenicity after sparring with single-celled organisms like amoeba for millions of years. Because our human cells are very similar to these primitive, single-celled organisms, they have acquired the skills to attack us".

For these reasons, such primitive cells are being used to replace animals for many kinds of biological tests.

"Effective control of MRSA within healthcare environments requires better understanding of their ecology," said Professor Brown.

"We now need to focus on improving our understanding of exactly how MRSA is transmitted, both in hospitals and in the wider environment, to develop control procedures that are effective in all scenarios."

Recently released figures show that infections caused by MRSA rose 5 per cent between 2003 and 2004, and mortality rates increased 15-fold between 1993 and 2002.


Source:University of Bath

Related biology news :

1. Genome of deadly amoeba shows surprising complexity, evidence of lateral gene transfer
2. Biologists determine genetic blueprint of social amoeba
3. Single cell amoeba increases MRSA numbers 1000- fold
4. Silence of the amoebae
5. Columbia research lifts major hurdle to gene therapy for cancer
6. U of M researcher examines newly emerging deadly disease
7. NYU researchers simulate molecular biological clock
8. First atlas of key brain genes could speed research on cancer, neurological diseases
9. New research questions basic tenet of neuron function
10. Vital step in cellular migration described by UCSD medical researchers
11. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
Post Your Comments:

(Date:11/12/2015)... , Nov. 11, 2015   Growing ... reliable analytical tools has been paving the way ... qualitative determination of discrete analytes in clinical, agricultural, ... are being predominantly used in medical applications, however, ... environmental sectors due to continuous emphasis on improving ...
(Date:11/10/2015)... , Nov. 10, 2015 ... biometrics that helps to identify and verify the ... is considered as the secure and accurate method ... of a particular individual because each individual,s signature ... results especially when dynamic signature of an individual ...
(Date:11/4/2015)... York , November 4, 2015 ... a new market report published by Transparency Market Research "Home ... Growth, Trends and Forecast 2015 - 2022", the global home ... US$ 30.3 bn by 2022. The market is estimated ... forecast period from 2015 to 2022. Rising security needs ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... ... 25, 2015 , ... A long-standing partnership between the Academy ... been formalized with the signing of a Memorandum of Understanding. , AMA Executive ... Karl Minter and Capt. Albert Glenn Tuesday, November 24, 2015, at AMA Headquarters ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... The United ... recipient of the 2016 USGA Green Section Award. Presented annually since 1961, the USGA ... his or her work with turfgrass. , Clarke, of Iselin, N.J., is ...
(Date:11/24/2015)... , ... November 24, 2015 , ... ... of the year and one of the premier annual events for pharmaceutical manufacturing: ... from 8–11 November 2015, where ISPE hosted the largest number of attendees in ...
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model Aeronautics (AMA), led ... also known as Multirotor Grand Prix, to represent the First–Person View (FPV) racing community. ... members have embraced this type of racing and several new model aviation pilots have ...
Breaking Biology Technology: