Navigation Links
MRSA use amoeba to spread, new research shows

The MRSA 'superbug' evades many of the measures introduced to combat its spread by infecting a common single-celled organism found almost everywhere in hospital wards, according to new research published in the journal Environmental Microbiology.

Scientists from the University of Bath have shown that MRSA infects and replicates in a species of amoeba, called Acanthamoeba polyphaga, which is ubiquitous in the environment and can be found on inanimate objects such as vases, sinks and walls.

As amoeba produce cysts to help them spread, this could mean that MRSA maybe able to be 'blown in the wind' between different locations.

Further evidence from research on other pathogens suggests that by infecting amoeba first, MRSA may emerge more virulent and more resistant to antibiotics when it infects humans.

"Infection control policies for hospitals should recognise the role played by amoeba in the survival of MRSA, and evaluate control procedures accordingly," said Professor Mike Brown from the Department of Pharmacy and Pharmacology at the University of Bath.

"Until now this source of MRSA has been totally unrecognised. This is a non-patient source of replication and given that amoeba and other protozoa are ubiquitous, including in hospitals, they are likely to contribute to the persistence of MRSA in the hospital environment".

"Adding to the concern is that amoebal cysts have been shown to trap pathogens and could potentially be dispersed widely by air currents, especially when they are dry.

"Replication of MRSA in amoeba and other protozoa raises several important concerns for hospital hygiene."

In laboratory tests, the researchers found that within 24 hours of its introduction, MRSA had infected around 50 per cent of the amoeba in the sample, with 2 per cent heavily infected throughout their cellular content.

Evidence with other pathogens suggests that pathogens that emerge from amoeba are more resist ant to antibiotics and more virulent.

"This makes matters even more worrying," said Professor Brown.

"It is almost as though the amoeba act like a gymnasium; helping MRSA get fitter and become more pathogenic".

"In many ways this may reflect how this kind of pathogenic behaviour first evolved. A good example is the bacterium that causes legionnaires disease. Probably it was pathogenic long before humans and other animals arrived on the evolutionary scene. Even today, it has no known animal host".

"The most likely reason is that Legionella and many pathogens learned their pathogenicity after sparring with single-celled organisms like amoeba for millions of years. Because our human cells are very similar to these primitive, single-celled organisms, they have acquired the skills to attack us".

For these reasons, such primitive cells are being used to replace animals for many kinds of biological tests.

"Effective control of MRSA within healthcare environments requires better understanding of their ecology," said Professor Brown.

"We now need to focus on improving our understanding of exactly how MRSA is transmitted, both in hospitals and in the wider environment, to develop control procedures that are effective in all scenarios."

Recently released figures show that infections caused by MRSA rose 5 per cent between 2003 and 2004, and mortality rates increased 15-fold between 1993 and 2002.


Source:University of Bath

Related biology news :

1. Genome of deadly amoeba shows surprising complexity, evidence of lateral gene transfer
2. Biologists determine genetic blueprint of social amoeba
3. Single cell amoeba increases MRSA numbers 1000- fold
4. Silence of the amoebae
5. Columbia research lifts major hurdle to gene therapy for cancer
6. U of M researcher examines newly emerging deadly disease
7. NYU researchers simulate molecular biological clock
8. First atlas of key brain genes could speed research on cancer, neurological diseases
9. New research questions basic tenet of neuron function
10. Vital step in cellular migration described by UCSD medical researchers
11. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
Post Your Comments:

(Date:5/3/2016)... Lithuania , May 3, 2016  Neurotechnology, ... released the MegaMatcher Automated Biometric Identification System ... of large-scale multi-biometric projects. MegaMatcher ABIS can process ... accuracy using any combination of fingerprint, face or ... MegaMatcher SDK and MegaMatcher Accelerator ...
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
(Date:4/14/2016)... April 14, 2016 BioCatch ... Detection, today announced the appointment of Eyal Goldwerger ... role. Goldwerger,s leadership appointment comes at a ... of the deployment of its platform at several of ... technology, which discerns unique cognitive and physiological factors, is ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking software company, ... Crime Laboratory, has joined STACS DNA as a Field Application Specialist. , “I ... President and COO of STACS DNA. “In further expanding our capacity as a scientific ...
(Date:6/23/2016)... Calif. , June 23, 2016  Blueprint Bio, ... biological discoveries to the medical community, has closed its ... Matthew Nunez . "We have received ... with the capital we need to meet our current ... essentially provide us the runway to complete validation on ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... at the Pennsylvania Convention Center and will showcase its product’s latest features from ... also be presenting a scientific poster on Disrupting Clinical Trials in The Cloud ...
Breaking Biology Technology: