Navigation Links
MIT's molecular sieve advances protein research

New MIT technology promises to speed up the accurate sorting of proteins, work that may ultimately aid in the detection and treatment of disease.

Separating proteins from complex biological fluids such as blood is becoming increasingly important for understanding diseases and developing new treatments. The molecular sieve developed by MIT engineers is more precise than conventional methods and has the potential to be much faster.

The team's results appear in recent issues of Physical Review Letters, the Virtual Journal of Biological Physical Research and the Virtual Journal of Nanoscale Science and Technology.

The key to the molecular sieve, which is made using microfabrication technology, is the uniform size of the nanopores through which proteins are separated from biological fluids. Millions of pores can be spread across a microchip the size of a thumbnail.

The sieve makes it possible to screen proteins by specific size and shape.In contrast, the current technique used for separating proteins, gel electrophoresis, is time-consuming and less predictable. Pore sizes in the gels vary, and the process itself is not well understood by scientists.

"No one has been able to measure the gel pore sizes accurately," said Jongyoon Han, the Karl Van Tassel Associate Professor of Electrical Engineering and Biological Engineering at MIT. "With our nanopore system, we control the pore size precisely, so we can control the sieving process of the protein molecules."

That, in turn, means proteins can be separated more efficiently, which should help scientists learn more about these crucial molecules, said Han, who also has appointments in MIT's Research Laboratory of Electronics, Computational and Systems Biology Initiative, Center for Materials Science and Engineering and Microsystems Technology Laboratories.

Han and his team, led by Jianping Fu, a graduate student in the Department of Mechanical Engineering, have devised a si eve that is embedded into a silicon chip. A biological sample containing proteins is put through the sieve for separation.

The sieving process is based on a theoretical model known as the Ogston sieving mechanism. In the model, proteins move through deep and shallow regions that act together to form energy barriers. These barriers separate proteins by size. The smaller proteins go through more quickly, followed by increasingly larger proteins, with the largest passing through last.

Once the proteins are separated, scientists can isolate and capture the proteins of interest. These include the "biomarker" proteins that are present when the body has a disease. By studying changes in these biomarkers, researchers can identify disease early on, even before symptoms show up, and potentially develop new treatments.To date, the Ogston sieving model has been used to explain gel electrophoresis, even though no one has been able to unequivocally confirm this model in gel-based experiments. The MIT researchers were, however, able to confirm Ogston sieving in the nanopore sieves.

"This is the first time anyone was able to experimentally confirm this theoretical idea behind molecular sieving, which has been used for more than 50 years," Han said. "We can precisely control the pore size, so we can do better engineering. We can change the pore shape and engineer a better separation system." The sieve structure is based on work Han did earlier at Cornell University with large strands of DNA.

The performance of the researchers' current one-dimensional sieves matches the state-of-the-art speed of one-dimensional gels, but Han said the sieve's performance can be improved greatly.

"This device can replace gels and give us an ideal physical platform to investigate Ogston sieving," Fu said. The new sieves also potentially could be used to replace 2D gels in the process of discovering disease biomarkers, as well as to learn more about disease.


'"/>

Source:Massachusetts Institute of Technology


Related biology news :

1. MITs ocean model precisely mimics microbes life cycles
2. MITs ocean model captures diversity of underwater forests
3. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
4. Source of molecular triggers in cutaneous T cell lymphoma identified
5. Plants, animals share molecular growth mechanisms
6. NYU researchers simulate molecular biological clock
7. Scientists reveal molecular secrets of the malaria parasite
8. Scientists identify molecular events that drive cell senescence
9. Researchers discover molecular mechanism that desensitizes us to cold
10. Findings have implications for tracking disease, drugs at the molecular level
11. Successful Test Of Single Molecule Switch Opens The Door To Biomolecular Electronics
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/15/2016)... , March 15, 2016 Yissum Research ... the technology-transfer company of the Hebrew University, announced today ... remote sensing technology of various human biological indicators. Neteera ... $2.0 million from private investors. ... on the detection of electromagnetic emissions from sweat ducts, ...
(Date:3/11/2016)... , March 11, 2016 ... new market research report "Image Recognition Market by Technology ... (Marketing and Advertising), by Deployment Type (On-Premises and Cloud), ... To 2022", published by MarketsandMarkets, the global market is ... to USD 29.98 Billion by 2020, at a CAGR ...
(Date:3/9/2016)... -- Nigeria . Recently, the ... public service employees either did not exist with their ...    --> Nigeria . Recently, ... 23,000 public service employees either did not exist with ... unlawfully.    --> DERMALOG, the biometrics innovation ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... ... May 25, 2016 , ... Lady had been battling arthritis since ... ligament in her left knee. Lady’s owner Hannah sought the help of Dr Jeff ... surgeon, to repair her cruciate ligament and help with the pain of Lady’s arthritis. ...
(Date:5/24/2016)... ... May 24, 2016 , ... Cell therapies for a range ... by research at Worcester Polytechnic Institute (WPI) that yielded a newly patented method ... , The novel method, developed by WPI faculty members Raymond Page, PhD, professor ...
(Date:5/24/2016)... ... May 24, 2016 , ... Last week, Callan Capital, ... executives and entrepreneurs, held The Future of San Diego Life Science event at the ... life science community attended the event with speakers Dr. Rich Heyman, former CEO of ...
(Date:5/23/2016)... ... May 23, 2016 , ... The need for blood donations in South Texas and across the ... Texas Blood & Tissue Center, blood donations are on the decline. In fact, donations across ... down 21 percent in South Texas in the last four years alone. , There is ...
Breaking Biology Technology: