Navigation Links
MIT researchers build tiny batteries with viruses

MIT scientists have harnessed the construction talents of tiny viruses to build ultra-small "nanowire" structures for use in very thin lithium-ion batteries.

By manipulating a few genes inside these viruses, the team was able to coax the organisms to grow and self-assemble into a functional electronic device.

The goal of the work, led by MIT Professors Angela Belcher, Paula Hammond and Yet-Ming Chiang, is to create batteries that cram as much electrical energy into as small or lightweight a package as possible. The batteries they hope to build could range from the size of a grain of rice up to the size of existing hearing aid batteries.

Batteries consist of two opposite electrodes - an anode and cathode - separated by an electrolyte. In the current work, the MIT team used an intricate assembly process to create the anode.

Specifically, they manipulated the genes in a laboratory strain of a common virus, making the microbes collect exotic materials - cobalt oxide and gold. And because these viruses are negatively charged, they can be complexed between oppositely charged polymers to form thin, flexible sheets.

The result? A dense, virus-loaded film that serves as an anode.

A report on the work will appear in the April 7 issue of Science.

Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering; Chiang, the Kyocera Professor of Materials Science and Engineering (MSE); and Hammond, the Mark A. Hyman Professor of Chemical Engineering (ChE), led a team of five additional researchers.

They are MSE graduate students Ki Tae Nam (the lead author), Dong-Wan Kim, Chung-Yi Chiang and Nonglak Meethong, and ChE postdoctoral associate Pil. J. Yoo.

In their research, the MIT team altered the virus's genes so they make protein coats that collect molecules of cobalt oxide, plus gold. The viruses then align themselves on the polymer surface to form ultrathin wires. Eac h virus, and thus the wire, is only 6 nanometers (6 billionths of a meter) in diameter, and 880 nanometers in length.

"We can make them in larger diameters," Belcher said, "but they are all 880 nanometers in length," which matches the length of the individual virus particles. And, "once we've altered the genes of the virus to grow the electrode material, we can easily clone millions of identical copies of the virus to use in assembling our batteries.

"For the metal oxide we chose cobalt oxide because it has very good specific capacity, which will produce batteries with high energy density," meaning it can store two or three times more energy for its size and weight compared to previously used battery electrode materials. And adding the gold further increased the wires' energy density, she added.

Equally important, the reactions needed to create nanowires occur at normal room temperatures and pressures, so there is no need for expensive pressure-cooking technology to get the job done.

The work is important, too, because energy density is a vital quality in batteries. A lack of energy density - meaning the amount of charge a battery of a given size can usefully carry - is what has hampered development of electric cars, since existing batteries are generally too heavy and too weak to compete with gasoline as an energy source. Still, battery technology is gradually being improved and may someday even become competitive as the price of oil escalates.

"The nanoscale materials we've made supply two to three times the electrical energy for their mass or volume, compared to previous materials," the team reported.

The researchers' work was spurred by "growing evidence that 'nanostructured' materials can improve the electrochemical properties of lithium-ion batteries," compared to more conventional batteries based on older technologies, the team wrote in Science.

But to create new battery materials, Belcher noted, special control is needed so just the right amounts of the exotic materials end up exactly where they belong. Cobalt oxide "has shown excellent electrochemical cycling properties, and is thus under consideration as an electrode for advanced lithium-ion batteries."

In earlier research, Belcher and colleagues learned they could exploit the abilities of microbes to recognize the correct molecules and assemble them where they belong.

A new means of inducing this order comes from self-assembly, a tool that is commonly used now in Hammond's lab. "By harnessing the electrostatic nature of the assembly process with the functional properties of the virus, we can create highly ordered composite thin films combining the function of the virus and polymer systems," Hammond said.


Source:Massachusetts Institute of Technology

Related biology news :

1. NYU researchers simulate molecular biological clock
2. Vital step in cellular migration described by UCSD medical researchers
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. UCSD researchers maintain stem cells without contaminated animal feeder layers
5. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
6. New protein discovered by Hebrew University researchers
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. Agilent Technologies releases automated literature search tool for biology researchers
9. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
10. Yale researchers identify molecule for detecting parasitic infection in humans
11. US life expectancy about to decline, researchers say
Post Your Comments:

(Date:9/28/2015)... , September 28, 2015 According ... (Hardware & Software), Product (Scanner & Others), Application (Access ... Defense, & Others) & Geography Global - Forecast to ... to reach USD 3627.90 Million by 2020, at a ... Browse 65 market data T ables and ...
(Date:9/24/2015)... 24, 2015 Publiceringsförbud ... Kerv ( ), ... idag världens första kontaktlösa betalningsring på ... 000 GBP för massproduktion via crowdfunding.  ... , Kerv-bärare kan göra direkta ...
(Date:9/10/2015)... , Sept. 10, 2015 Pursuant ... Clinic Wellness to create an interactive, image-based health ... health and wellness kiosk.  The unique assessment quantifies ... a number that suggests an individual,s biological age ... values as measured by the kiosk. ...
Breaking Biology News(10 mins):
(Date:10/13/2015)... , Oct. 13, 2015  Cepheid (Nasdaq: ... ending September 30, 2015. --> ... total revenue for the third quarter of 2015 is ... per share is expected to be approximately $(0.32) for ... non-GAAP net loss per share for the third quarter ...
(Date:10/13/2015)... ... October 13, 2015 , ... InSphero AG , the ... cell culture models, has launched a 14 Day Hepatotoxicity Testing Service ... Human Liver Microtissues. The service streamlines toxicity testing of compounds in InSphero’s ...
(Date:10/13/2015)... DUBLIN , Oct. 13 2015 Research ... the "US & Europe Markets for Bone Morphogenetic ... report to their offering. --> ... factors that induce the formation of bone after a ... during embryonic development in the formation of the skeleton. ...
(Date:10/13/2015)... -- " Microbiology Culture Market - Global Industry ... " , the global microbiology culture market was valued ... bn by 2023, expanding at a CAGR of 5.9% during the ... Microbiology Culture Market - Global Industry Analysis, Size, Share, Growth, Trends, ... global microbiology culture market was valued at US$4.51 bn in 2014 ...
Breaking Biology Technology: