Navigation Links
MIT finds most complex protein knot ever seen

An MIT team has discovered the most complicated knot ever seen in a protein, and they believe it may be linked to the protein's function as a rescue agent for proteins marked for destruction.

"In proteins, the three-dimensional structure is very important to the function, and this is just one example," said Peter Virnau, a postdoctoral fellow in physics and an author of a paper on the work that appears in the Sept. 15 issue of the Public Library of Science, Computational Biology.

Knots are rare in proteins - less than 1 percent of all proteins have any knots, and most are fairly simple. The researchers analyzed 32,853 proteins, using a computational technique never before applied to proteins at this scale.

Of those that had knots, all were enzymes. Most had a simple three-crossing, or trefoil knot, a few had four crossings, and the most complicated, a five-crossing knot, was initially found in only one protein - ubiquitin hydrolase.

That complex knot may hold some protective value for ubiquitin hydrolase, whose function is to rescue other proteins from being destroyed - a dangerous job.

When a protein in a cell needs to be destroyed, it gets labeled with another protein called ubiquitin. "It's a death mark for the protein," said Leonid Mirny, an author of the paper and an associate professor in the MIT-Harvard Division of Health Sciences and Technology.

Once the "death mark" is applied, proteins are shuttled to a cell structure called a proteasome, which pulls the protein in and chops it into pieces. However, if ubiquitin hydrolase intervenes and removes the ubiquitin, the protein is saved.

The complicated knot found in ubiquitin hydrolase may prevent it from getting sucked into the proteasome as it works, Mirny said. The researchers hypothesize that proteins with complex knots can't be pulled into the proteasome as easily, and the knots may make it harder for the protein to unfold, which is necessary fo r degradation.

The same knot is found in ubiquitin hydrolase in humans and in yeast, supporting the theory that there is a connection between the knot and the protein's function. This also seems to suggest that the knot has been "highly preserved throughout evolution," Virnau said.

Until now, scientists have not paid much attention to knots in proteins, but the MIT researchers hope their work will ignite further interest in the subject. "We just hope this will become a part of the routine crystallographers and NMR spectroscopists do when they solve a structure," Mirny said.

Virnau is working on a computer program and a web server, soon to be publicly available, that can analyze the structure of any protein to see if it has knots, which he believes could be helpful to researchers in structural genomics. (Structural genomics aims to determine the structure of all proteins produced by a given organism.)

Since their initial screening, the researchers have discovered five-crossing knots in two other proteins - a brain protein whose overexpression and mutations are linked with cancer and Parkinson's disease, and a protein involved in the HIV replication cycle.

They have also found examples of proteins that are closely related and structurally similar except for the presence or absence of a knot. Two versions of the enzyme transcarbamylase, from humans and certain bacteria, catalyze different reactions, depending on whether or not there is a knot. The researchers speculate that somewhere along the evolutionary line, the sequence that allowed a protein to form the knot was added or deleted.

The third author on the paper is Mehran Kardar, an MIT physics professor. The research was funded by the National Science Foundation and the German Research Foundation.


'"/>

Source:Massachusetts Institute of Technology


Related biology news :

1. Current human embryonic stem cell lines contaminated UCSD/Salk team finds
2. Study finds more than one-third of human genome regulated by RNA
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. Same mutation aided evolution in many fish species, Stanford study finds
5. NC State scientist finds soft tissue in T. rex bones
6. Genrate: a generative model that finds and scores new genes and exons in genomic microarray data
7. Genetically modified rice in China benefits farmers health, study finds
8. Survey finds silver contamination in North Pacific waters
9. Anti cancer virotherapy well tolerated in first human administration, research finds
10. NASA study finds snow melt causes large ocean plant blooms
11. Oceans more vulnerable to agricultural runoff than previously thought, study finds
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/25/2016)... , Jan. 25, 2016   Unisys Corporation (NYSE: ... at John F. Kennedy (JFK) International Airport, New York ... (CBP) identify imposters attempting to enter the United ... belong to them. pilot testing of the system ... at three terminals at JFK during January 2016. --> ...
(Date:1/20/2016)... , Jan. 20, 2016 A market that ... directly benefit from the explosion in genomics knowledge. Learn ... Sound Research. A range of dynamic trends are pushing ... - personalized medicine - pharmacogenomics - pathogen evolution - ... large markets - greater understanding of the role of ...
(Date:1/13/2016)... , January 13, 2016 ... published a new market report titled - Biometric Sensors Market ... Forecast, 2015 - 2023. According to the report, the global biometric ... is anticipated to reach US$1,625.8 mn by 2023, expanding ... In terms of volume, the biometric sensors market is ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... ... February 04, 2016 , ... ... and triple quad LC-MS, host live demos and poster sessions, and present on ... exhibition. The conference takes place March 6 to 10 at the Georgia World ...
(Date:2/4/2016)... YORK , February 4, 2016 ... QBIO), a biotechnology acceleration company is pleased to provide the ... --> Over the last 3 months we ... and securities purchase agreements exceeding $1,000,000. As a result, we ... our Mannin Research Inc. license agreement and expect that development ...
(Date:2/4/2016)... , February 4, 2016 ... Laboratories (ABL), Inc. --> Strasbourg, France ... --> PharmaVentures is pleased to announce that it ... its biopharmaceutical manufacturing unit in Strasbourg, France ... --> --> Transgene (Euronext: ...
(Date:2/3/2016)... Ascendis Pharma A/S (Nasdaq: ASND ), ... TransCon technology to address significant unmet medical needs, today ... Leerink Partners Global Healthcare Conference Location: , Waldorf ... 2016 Time:  , 11:55am EST www.ascendispharma.com ... An audio webcast of this event will be posted ...
Breaking Biology Technology: