Navigation Links
Life in deadly conditions

Max Planck researchers sequence the genome of a microbiological master of adaptationArchaea, small single-celled organisms, are particularly interesting for scientists because they are able to live under extreme environmental conditions, for instance under high salt concentrations, high pH-values, or high temperatures. Nature's masters of adaptation, they are model organisms from which researchers can draw conclusions about the first organisms on earth.

The scientists studied mechanisms that make survival possible for the single-celled organisms, which are rod-shaped and are only five hundredths of a millimetre in size. At the Department of Membrane Biochemistry, led by Professor Dieter Oesterhelt, Max Planck researchers have shown, using genomic and proteomic methods combined with physiological experiments, how to explain the amazing abilities of these extreme organisms.

Friedhelm Pfeiffer, the research group's bioinformatics expert, created a database for halophile (Greek "salt-lovers") archaea, called HaloLex (see link below). Using the database, genetic and protein data about the organisms is tied to information about their structure and function. The newest genome on HaloLex is now that of Natronomonas pharaonis, whose genetic information was made available by Michaela Falb, Friedhelm Pfeiffer, Peter Palm, Karin Rodewald, Volker Hickmann, J?Tittor and Dieter Oesterhelt. This information is made of some 2.6 million base pairs (about one thousandth of the human genome), and encodes the synthesis of 2,843 proteins.

Natronomonas pharaonis has to deal with two different kinds of life-threatening conditions. It was found in pools which are strongly alkaline (pH-value of about 11) with an extremely high salt concentration (over 300 grams of salt per litre of water). The high pH-values are about the same as lye soap and the salt content that of the Dead Sea. As far as the salt content is concerned, Natronomonas pharaonis behaves like closely rela ted organisms - for example, Halobacterium salinarum, the "house pet" of Dieter Oesterhelt's department. In contrast to other salt-tolerant organisms, halophile archaea have an extremely high salt concentration inside of their cells. These levels of salt concentration cannot usually support proteins, the critical functional components of living cells. But the greater portion of amino-acid building blocks in the proteomes of halophile archaea make it possible for the proteins to remain stabile, even in high salt concentrations. To survive among the extremely high pH-values, Natronomonas pharaonis also has a moderately increased pH-value inside its cells.

The cellular components that are in direct contact with the brine around them need their own adaptation strategies. These components are the cell membrane and the proteins that have to function outside the cell. Michaela Falb discovered, using theoretical analysis as part of her doctoral thesis, that Natronomonas pharaonis has a particularly large number of proteins attached to lipid molecules, anchoring it to the cell membrane.

Important functions of the energy metabolism - for example, the respiratory chain - are embedded in the cell membrane and have to be adapted to the adverse external conditions. Despite a detailed bioinformatic analysis of the genome, it was still unclear whether Natronomonas pharaonis has a respiratory chain and which ions would play a role in its functioning. The bioinformatics expert Michaela Falb and biochemist J?Tittor thus designed additional experimental studies which showed that Natronomonas pharaonis does indeed have a functioning respiratory chain, which amazingly, and in contrast to other organisms that grow in alkaline conditions, functions with a "normal" proton. The Max Planck researchers could thus refute the paradigm, dominant until now, that organisms in alkaline conditions have to switch to other ions (for example, sodium, Na+).

A higher pH-value leads to the depletion of ammonium. Because ammonium nitrate is a key building block of amino acids, the tiny organism should have problems synthesising it. Michaela Falb discovered in the genome a number of ways that Natronomonas pharaonis can take optimal advantage of the low incidence of nitrogen: through the uptake and metabolism of nitrate and urea, as well as the efficient uptake of ammonia.

The co-operation of theoretically and experimentally-oriented researchers shed light on other questions. The bioinformatics experts were able to predict that Natronomonas pharaonis can by itself produce vitamins and amino acids. Thus, the growth medium for the culture of the single-celled organism could be significantly simplified.

Dieter Oesterhelt explains that "the comparison with other halophile archaea we have studied shows that these organisms have a high plasticity with which they can adapt to the varying, extreme environmental conditions. The frugality of Natronomonas pharaonis, with the possibility of simplifying the nutrient solution, opens new possibilities for experimentally investigating the metabolic network. The data we thus acquire make up an important foundation for developing and testing metabolic models in the framework of systemic biological studies and in interdisciplinary co-operation with mathematicians."


'"/>

Source:Max-Planck-Gesellschaft


Related biology news :

1. Genome of deadly amoeba shows surprising complexity, evidence of lateral gene transfer
2. Scientists seek answers on what activates deadly anthrax spores
3. U of M researcher examines newly emerging deadly disease
4. Smart drug targets deadly brain cancer
5. Shark attack worries? Driving to the beach is more deadly
6. Unusual antibiotics show promise against deadly superbugs
7. Monkeypox mystery: New research may explain why 2003 outbreak in the US wasnt deadly
8. Three deadly parasite genomes sequenced
9. US/African project deciphers deadly parasite genome
10. Emerging staph strains found to be increasingly deadly and deceptive
11. UCLA discovery will aid in treatment of patients with a deadly brain cancer
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/5/2017)... Today HYPR Corp. , leading innovator ... of the HYPR platform is officially FIDO® Certified ... architecture that empowers biometric authentication across Fortune 500 enterprises ... over 15 million users across the financial services industry, ... product suites and physical access represent a growing portion ...
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities and ... and behavioral), by technology (fingerprint, AFIS, iris recognition, facial ... and others), by end use industry (government and law ... financial and banking, and others), and by region ( ... , Asia Pacific , and the ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... BioMedGPS announces expanded coverage of ... newest module, US Hemostats & Sealants. , SmartTRAK’s US Market for Hemostats and ... synthetic sealants and biologic sealants used in surgical applications. BioMedGPS estimates the market ...
(Date:10/11/2017)... ... ... Personal eye wash is a basic first aid supply for any work environment, but most ... you rinse first if a dangerous substance enters both eyes? It’s one less decision, and ... unique dual eye piece. , “Whether its dirt and debris, or an acid or alkali, ...
(Date:10/11/2017)... ... 11, 2017 , ... Disappearing forests and increased emissions are the main causes ... each year. Especially those living in larger cities are affected by air pollution related ... the most pollution-affected countries globally - decided to take action. , “I knew I ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the ... won a US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to ... Experience from US2020. , US2020’s mission is to change the trajectory of STEM ...
Breaking Biology Technology: