Navigation Links
Leprosy genome tells story of human migrations, French researchers report in Science

A French genetics study comparing strains of leprosy-causing bacteria has revealed some surprises about how the pathogen evolved and how it was spread across the continents by human migrations. The research, led by scientists at the Pasteur Institute in Paris, appears in the 13 May issue of the journal Science, published by AAAS, the nonprofit science society.

The findings indicate that the world's existing leprosy infections are all caused by a single bacterial clone that has spread yet barely mutated for centuries. They also show that the disease may have begun in East Africa, as opposed to India as previously thought, and then spread to the other continents in part through European colonialism and later the slave trade.

One of the oldest known human diseases, leprosy is still a significant problem in parts of the developing world, especially India. According to the World Health Organization, roughly 500,000 new cases were detected in 2003. (

"Leprosy is still very real and devastating to patients who aren't treated appropriately. The better we can understand this pathogen's genome and the subtle differences among its various strains worldwide, the better position we'll be in to ultimately eliminate the disease," said Caroline Ash, Senior Editor at Science.

The ability to trace an infection back to a certain region may help public health workers monitor the movement of the disease over time and determine the geographic source of new infections, said study author Stewart Cole of the Pasteur Institute.

Historically, it's been thought that leprosy originated in the Indian subcontinent and was then introduced to Europe by Greek soldiers returning from the Indian campaign of Alexander the Great, according to Cole. More research will be necessary to confirm this, but the new findings indicate that the disease actually originated in East Africa or perhaps the Near East, then migrated east ward and westward.

Europeans and North Africans then spread Leprosy to West Africa, and the slave trade brought the disease from West Africa to the Caribbean and South America, the study suggests. Europeans also introduced leprosy to North America.

"Colonialism was extremely bad for parts of the world in terms of human health," said Cole.

The disease, caused by Mycobacterium leprae, primarily affects the skin and nervous system, particularly the limbs and digits. It's not especially contagious, as people once widely believed, but it can cause permanent disability and disfigurement and is still a source of social stigma. The disease is treatable with a combination of antibiotics.

The bacterium has long puzzled researchers because its genome is filled with an unusually high proportion of damaged, nonfunctional genes. This is probably why it grows exceedingly slowly, making it difficult for researchers to study because they can't grow it in culture. In fact, M. leprae only lives in humans and in armadillos (which might have acquired the bacterium by eating infected human cadavers), and it can also grow in the footpads of mice.

Cole and his international research team compared the genomes of seven strains of M. leprae taken from patients around the world and then grown in armadillos until the samples were large enough to analyze. They focused on genetic sequences known to be dynamic -- to move around, copy themselves or disappear -- and thus most likely to reflect evolutionary change, but found strikingly little variation.

Next, the researchers looked for mutations known as "single nucleotide polymorphisms" or "SNPs," which are substitutions of single nucleotides or "letters" at a specific spot in the genome. They found only three spots where useful SNPs occurred.

"Finding so few SNPs is pretty unusual. It's the least number of SNPs I'm aware of in any bacterium," Cole said.

At each of the three SNP locatio ns, one of four different nucleotides can be substituted, making for a possible 64 different combinations in the genetic sequence. In a study of 175 different bacteria samples from 21 countries, the researchers found only four of these possible combinations.

Overall, the genetic similarity between the different samples suggests that the bacterium's genome is exceedingly stable.

"It seems that there was only a single source of the bacterium that was at the origin of this global pandemic," Cole said.

Each of the four SNP combinations was most common in a certain geographic region, allowing the researchers to trace how the pathogen had spread from its original source.


Source:American Association for the Advancement of Science

Related biology news :

1. Leprosy microbes lead scientists to immune discovery
2. International Team Determines Geographic Origin of Leprosy
3. Man and mouse share genome structures
4. Whole genome fine map of rice completed
5. Study finds more than one-third of human genome regulated by RNA
6. A bacterial genome reveals new targets to combat infectious disease
7. Scientists decipher genome of fungus that can cause life-threatening infections
8. Highly adaptable genome in gut bacterium key to intestinal health
9. Fleshing out the genome
10. Agilent Technologies new genome analysis technology set to accelerate Australia fight against mesothelioma
11. wFleaBase: the Daphnia genome database
Post Your Comments:

(Date:11/20/2015)... Connecticut , November 20, 2015 ... authentication company focused on the growing mobile commerce market ... CEO, Gino Pereira , was recently interviewed on ... interview will air on this weekend on Bloomberg ... Latin America . --> NXTD ) ("NXT-ID" ...
(Date:11/19/2015)...  Based on its in-depth analysis of the biometric ... the 2015 Global Frost & Sullivan Award for Product ... this award to the company that has developed the ... the market it serves. The award recognizes the extent ... customer base demands, the overall impact it has in ...
(Date:11/19/2015)... -- Although some 350 companies are actively involved in molecular ... according to Kalorama Information. These include Roche Diagnostics, Hologic, Abbott ... of the 6.1 billion-dollar molecular testing market, according to ... Diagnostic s .    ... one company and only a handful of companies can ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... FAR HILLS, N.J. (PRWEB) , ... November 24, 2015 , ... ... University, as the recipient of the 2016 USGA Green Section Award. Presented annually since ... of golf through his or her work with turfgrass. , Clarke, of ...
(Date:11/24/2015)... Nov. 24, 2015 Cepheid (NASDAQ: CPHD ... at the following conference, and invited investors to participate ...      Tuesday, December 1, 2015 at 11.00 a.m. ...      Tuesday, December 1, 2015 at 11.00 a.m. ... New York, NY      Tuesday, December ...
(Date:11/24/2015)... Halozyme Therapeutics, Inc. (NASDAQ: HALO ) will be presenting at ... on Wednesday, December 2 at 9:30 a.m. ET/6:30 a.m. PT ... provide a corporate overview. th Annual Oppenheimer Healthcare ... ET/10:00 a.m. PT . Jim Mazzola , vice president ... --> th Annual Oppenheimer Healthcare Conference in ...
(Date:11/24/2015)... /CNW/ - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ... the quarter ended September 30, 2015. Amounts, unless ... presented under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of ... only value enriching for this clinical program, but ...
Breaking Biology Technology: