Navigation Links
K-State professors discover enzyme responsible for creation of a beetle's hard shell

Kansas State University researchers think their discovery of the enzyme involved in the hardening of a beetle's exoskeleton or cuticle could lead not only to better pest control, but also help create similar strong, lightweight materials for use in aircraft and armor.

After a beetle first molts, its exoskeleton is soft and hydrated. Somehow, it dries out and forms a hard, stiff exoskeleton. Since the 1940s, scientists have wondered which enzyme among several possible candidates was involved in the hardening process.

The K-State researchers have found that by knocking out an enzyme called laccase-2, cuticle tanning, the process of hardening and pigmentation, can be prevented in the red flour beetle, Tribolium castaneum.

A paper, to be released this week in the Proceedings of the National Academy of Sciences, presents the research results. The K-State researchers are Yasuyuki Arakane, research associate in biochemistry; Subbaratnam Muthukrishnan, professor of biochemistry; Richard Beeman, adjunct professor of entomology; Michael Kanost, professor and head of the department of biochemistry; and Karl Kramer, adjunct professor emeritus of biochemistry.

Kramer said K-State researchers wanted to find out what happens between the times when the cuticle is soft and when it is hard. They studied the cuticle's composition and how the components interacted to give it stiffness, flexibility and lightness. The main components in the cuticle are proteins and chitin, which also are found in crustaceans and other invertebrates.

The researchers knew one of two classes of oxidative enzymes, tyrosinases or laccases, is likely responsible for catalyzing the exoskeleton's hardening by cross-linking cuticular proteins, Kanost said.

"When we knocked out tyrosinase, everything was normal," Kramer said. "When we knocked out laccase-2, we prevented tanning from taking place."

When the laccase-2 gene was not expressed, the newly formed cut icle remained soft and white instead of becoming hard and dark-colored. These results indicated which protein was responsible for the hard shell's formation, Kanost said.

The identification of laccase-2 as the catalyst for cuticle tanning opens up possibilities of targeting this protein as a way of weakening the beetle's physical defenses against mechanical, chemical and biological injuries, Muthukrishnan said. Better insecticides could be developed as a result of having a more insect-specific target like laccase-2, Kramer said.

"Gaining knowledge about a molecular process required for insect development, but absent from humans and other vertebrate animals, such as cuticle tanning, may be useful for developing new, bio-rational methods for controlling pest insect populations," Kanost said.

Armed with this new information, a number of practical applications are possible. Materials based on the chemistry of the insect exoskeleton could be developed to make lightweight materials for aircraft and military armor, Kramer said.

"I sometimes speculate that we might help K-State coach Bill Snyder develop better football helmets and shoulder pads for his players," he said.

Collaborative research with scientists at the University of Kansas is in the beginning stages to analyze quantitatively the mechanical properties of insect cuticles and to perform cuticle protein cross-linking experiments that are catalyzed by insect laccase, Kramer said. KU scientists will test the strength of the synthetic cross-linked biopolymers that are created. This could be used for the development of strong, lightweight materials.

Both Beeman and Kramer also work at the Grain Marketing and Production Research Center, Agricultural Research Service, United States Department of Agriculture, in Manhattan.


'"/>

Source:Kansas State University


Related biology news :

1. K-State researchers study insects immune system
2. K-State researchers study gene regulation in insects
3. K-Staters design and build a low-cost remote sensing tool for environmental studies
4. UAB scientists discover the origin of a mysterious physical force
5. Researchers discover way to make cells in the eye sensitive to light
6. Protein discovery could unlock the secret to better TB treatment
7. Newly-discovered class of genes determines ?and restricts ?stem cell fate
8. Newly discovered virus linked to childhood lung disorders and Kawasaki disease
9. Purdue proves concept of using nano-materials for drug discovery
10. Scientists discover the cellular roots of graying hair
11. Researchers discover molecule that causes secondary stroke
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems ... seamlessly log work hours, for employers to make sure the right employees are actually ... http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
(Date:6/7/2016)... 7, 2016  Syngrafii Inc. and San Antonio ... that includes integrating Syngrafii,s patented LongPen™ eSignature "Wet" ... collaboration will result in greater convenience for SACU ... while maintaining existing document workflow and compliance requirements. ... Highlights: ...
(Date:6/2/2016)... , June 2, 2016 The Department ... has awarded the 44 million US Dollar project, for the ... Vehicle Plates including Personalization, Enrolment, and IT Infrastructure , ... in the production and implementation of Identity Management Solutions. Numerous ... however Decatur was selected for the ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 27, 2016 , ... Newly created 4Sight Medical Solutions ... the healthcare market. The company's primary focus is on new product introductions, to ... that are necessary to help companies efficiently bring their products to market. , ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young ... cancer. Members of the Class of 2016 were selected from a pool of ... More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: