Navigation Links
Jumping gene helps explain immune system's abilities

A team led by Johns Hopkins scientists has found the first clear evidence that the process behind the human immune system's remarkable ability to recognize and respond to a million different proteins might have originated from a family of genes whose only apparent function is to jump around in genetic material. "Jumping genes" essentially cut themselves out of the genetic material, and scientists have suspected that this ability might have been borrowed by cells needing to build many different proteins from a specific, single set of instructions -- the key to recognizing a million immune-stimulating proteins. But until now, no jumping gene was known to behave just right.

Writing in the Dec. 23 issue of Nature, the researchers show that a jumping gene called Hermes, still active in the common house fly, creates changes in DNA very much like those created by the process behind antigen recognition. "Hermes behaves more like the process used by the immune system to recognize a million different proteins, called antigens, than any previously studied jumping gene," says Nancy Craig, Ph.D., professor of molecular biology and genetics in Johns Hopkins' Institute for Basic Biomedical Sciences and a Howard Hughes Medical Institute investigator. "It provides the first real evidence that the genetic processes behind antigen diversity might have evolved from the activity of a jumping gene, likely a close relative of Hermes." Recognition of so many antigens allows the immune system to fight infection and distinguish friend from foe. The "big picture" behind this ability is that cells build proteins called antibodies that bind to particular antigens, but the early steps of that process have been difficult to study. Hermes should help reveal some secrets of this process, the researchers say. "The immune system takes an approach to protein building similar to that of diners creating a meal at a cafeteria, but how the immun e system's 'a la carte' process happens is still murky," says Craig. But the a la carte approach provides great diversity from a limited number of choices, whether in the immune system or in a cafeteria. For example, at a cafeteria, one diner could have a meal of mashed potatoes, broccoli and a pork chop, and another French fries, salad and a hamburger, and so on through all the possible combinations of offerings. While the choices aren't as tasty, immune cells select sections of certain genetic instructions in order to make instructions for a protein that will recognize a particular antigen. Machinery snips out unwanted genetic sections and reconnects the leftover ones, creating a unique gene (the cellular equivalent of the diner's meal). Snipping out different sections will lead to a different gene, carrying instructions for a different protein that will recognize a different antigen, and on and on. This a la carte process, known as V(D)J recombination, is similar to the excision of jumping genes, but none had matched one of its characteristic oddities: As the unwanted DNA is being removed, the remaining DNA forms a tiny loop. Unexpectedly, when Hermes is being cut out of the DNA, the leftover DNA also forms a hairpin loop, temporarily doubling back on itself, postdoctoral fellows Liqin Zhou, Ph.D., and Rupak Mitra, Ph.D., discovered in experiments in test tubes and with E. coli bacteria. Although this loop distances Hermes from its well-studied cousins, the Hermes protein still has an important family trait, the researchers report. Colleagues at the National Institutes of Health found that a few key building blocks in the protein's DNA-snipping crevice are identical to those in other jumping genes' proteins, even though the overall sequence is quite different. "Because of its similarities both to V(D)J recombination and to other families of jumping genes, Hermes is the first real link between the two processes," says Craig. "It also is likely to be a good model t o figure out what's happening early on in V(D)J recombination." Understanding how Hermes and other jumping genes work also holds clues to fighting bacterial infections, improving gene therapies and tackling disease-carrying insects, Craig notes. Bacterial jumping genes can protect bacteria from certain antibiotics. Scientists also are studying jumping genes as vectors to carry gene therapies and as potential modifiers to disrupt the growth-controlling genes of organisms such as mosquitoes and medflies.
'"/>

Source:John Hopkins Medecine


Related biology news :

1. Jumping genes contribute to the uniqueness of individual brains
2. Jumping gene could provide non-viral alternative for gene therapy
3. Protein helps regulate the genes of embryonic stem cells
4. Scientists reveal the shape of a protein that helps retroviruses break into cells
5. Thai spice helps cut blood sugar swings
6. Chemists synthesize molecule that helps body battle cancers, malaria
7. Ancient DNA helps clarify the origins of two extinct New World horse species
8. Massey Cancer Center researcher helps to identify a piece of the cancer puzzle
9. Study: Well-known protein helps stem cells become secretory cells
10. Beyond genes: Lipid helps cell wall protein fold into proper shape
11. Simple sea sponge helps scientists understand tissue rejection

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/9/2016)... YORK , March 9, 2016 This ... and future states of the RNA Sequencing (RNA Seq) ... segments such as instruments, tools and reagents, data analysis, ... Analyze various segments of the RNA-Sequencing market such as ... services Identify the main factors affecting each segment and ...
(Date:3/8/2016)... , March 8, 2016   Valencell ... technology, today announced it has secured $11M in ... GII Tech, a new venture fund being launched ... additional participation from existing investors TDF Ventures and ... funds to continue its triple-digit growth and accelerate ...
(Date:3/3/2016)... and DE SOTO, Kansas ... U.S.-based Stroke Detection Plus® to offer Oncimmune,s Early ... assessment and early detection of lung cancer ... employers, unions and individuals. --> Early CDT®-Lung ... and individuals. --> Oncimmune, a leader in ...
Breaking Biology News(10 mins):
(Date:5/19/2016)... 19, 2016 - I dati ... durante il 52 ° Congresso ... - Le conclusioni dello studio indicano un ... trattati, di cui il 90% presenta una d urata ... più. Il settantadue per cento dei pazienti ha riscontrato un ...
(Date:5/18/2016)... The Biotech industry continues to face a wave ... no opportunities ahead. Today, ActiveWallSt.com has on its list these ... Seattle Genetics Inc. (NASDAQ: SGEN ), Chiasma Inc. ... OPHT ). Sign up now to receive our free ... Threshold Pharmaceuticals Inc.,s shares gained 0.68%, closing Tuesday,s ...
(Date:5/18/2016)... IN (PRWEB) , ... May 18, 2016 , ... The ... and is now celebrating its dream of reaching a total of $1 million in ... scholarships awarded to 10 high school graduates from across the nation has helped bring ...
(Date:5/17/2016)... ... May 17, 2016 , ... ... animal waste reduction applications, announced today it will be showcasing ManureMagicâ„¢ at booth ... ManureMagicâ„¢ was featured in the Wall Street Journal last year and more recently ...
Breaking Biology Technology: