Navigation Links
Jefferson researchers uncover new way nature turns genes on and off

Peering deep within the cells of fruit flies, developmental biologists at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia may have discovered a new way that genes are turned on and off during development. If they're right, and the same processes are at work in higher organisms, including mammals, the findings could eventually have implications for improving the understanding of a range of diseases, including childhood cancer.

Reporting in the journal Cell, Alexander Mazo, Ph.D., professor of biochemistry and molecular biology at Jefferson Medical College, Svetlana Petruk, Ph.D., and their co-authors focused on pieces of genetic material called non-coding (nc)RNAs. About two-thirds of the human genome is converted into such RNAs (the better known messenger RNAs are translated into proteins), though the function of the majority is unknown. The researchers detailed a possible mechanism by which ncRNAs briefly control the functioning of homeotic, or HOX, genes, which guide the master developmental plan of the organism.

"We think that this new mechanism operates early in embryogenesis," says Dr. Mazo.

According to Dr. Mazo, the researchers found that one of the likely mechanisms behind ncRNAs' ability to regulate essential coding genes is through a "transcription interference" mechanism. "Such mechanisms are known in bacteria and yeast, but not much is known in higher organisms," he explains.

In the fruit fly, HOX gene activity is maintained by genes and proteins in the Trithorax group (TrxG). These proteins are thought to act through so-called maintenance elements, one of which, in a nearby region, bxd, is located between two HOX genes, Ubx and abd-A. Dr. Mazo explains that several "long" ncRNAs are transcribed through bxd maintenance elements. They were thought to be expressed in the same cells as Ubx, and to regulate HOX gene coding sequence expression. But the researchers found something different: ncRNAs i nstead can repress Ubx activity by blocking its activity in certain types of cells in the developing embryo.

"Importantly, non-coding RNAs are very tightly developmentally regulated, as we show in case of bxd RNAs," Dr. Mazo notes. "These create an enormous potential to regulate the neighboring coding genes in a time- and tissue-specific manner. This is a new type of transcriptional regulation mechanism for higher eukaryotes, and it is very likely that it is conserved in mammals."

Understanding the details of the TrxG system could someday have implications for ALL, a dangerous type of childhood leukemia. The disease stems from gene rearrangements in utero. MLL, the gene that is affected in humans, corresponds to Trithorax in fruit flies. "ALL is thought to be a disease of misregulated HOX genes," says Dr. Mazo.

HOX gene groups have long been known to be "transcriptional regulators" that control the multitude of genes involved in embryonic development, Dr. Mazo says. He and his group would like to ultimately better understand the early stages of such development.


'"/>

Source:Thomas Jefferson University


Related biology news :

1. Jefferson Virologists Coax HIV Out of Hiding
2. Jefferson researchers find nanoparticle shows promise in reducing radiation side effects
3. Jefferson biologist coaxing human embryonic stem cells to make dopamine with simpler, faster method
4. Jefferson scientists identify gene defect leading to abnormal skin development and cancer
5. Jefferson researchers building a better rabies vaccine
6. Jefferson scientists identify gene mutation potentially involved in breast cancer initiation
7. Immune cell communication key to hunting viruses, Jefferson immunologists show
8. Jefferson scientists find aging gene also protects against prostate cancer development
9. Jefferson scientists find high glucose before surgery raises risk of dangerous complications
10. Jefferson researchers discovery may change thinking on how viruses invade the brain
11. Elderly spinal cord injuries increase five-fold in 30 years, Jefferson neurosurgeons find
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/28/2017)... The report "Video Surveillance Market ... Storage Devices), Software (Video Analytics, VMS), and Service (VSaaS, ... to 2022", published by MarketsandMarkets, the market was valued ... to reach USD 75.64 Billion by 2022, at a ... year considered for the study is 2016 and the ...
(Date:3/24/2017)... Research and Markets has announced the addition of the ... Forecast to 2025" report to their offering. ... The Global Biometric Vehicle Access System ... over the next decade to reach approximately $1,580 million by 2025. ... forecasts for all the given segments on global as well as ...
(Date:3/22/2017)... March 21, 2017   Neurotechnology , a ... technologies, today announced the release of the ... provides improved facial recognition using up to 10 ... single computer. The new version uses deep neural-network-based ... and it utilizes a Graphing Processing Unit (GPU) ...
Breaking Biology News(10 mins):
(Date:7/18/2017)... ... July 18, 2017 , ... G-CON today announced that ... Office for its Patent Applications 14/858,857 and 13/669,785 both entitled Modular, Self-Contained, Mobile ... further expand the protection of G-CON’s R&D investments and validate the G-CON platform ...
(Date:7/18/2017)... ... July 18, 2017 , ... Allotrope Foundation ... the first phase of the Allotrope Framework for commercial use. , The Bio-IT ... to “not only elevate the critical role of information technology in modern biomedical ...
(Date:7/17/2017)... ... , ... Whitehouse Laboratories is excited to announce that it ... of ISO 80369 standard test procedures. The ISO 80369 series of eight test ... With this recent expansion, Whitehouse Labs becomes one of the only facilities in ...
(Date:7/17/2017)... ... July 17, 2017 , ... ... announced safety software company AB Cube has joined its eHealth App ... advance technology innovation across life sciences and healthcare. Under the partnership, AB ...
Breaking Biology Technology: