Navigation Links
Jefferson researchers uncover new way nature turns genes on and off

Peering deep within the cells of fruit flies, developmental biologists at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia may have discovered a new way that genes are turned on and off during development. If they're right, and the same processes are at work in higher organisms, including mammals, the findings could eventually have implications for improving the understanding of a range of diseases, including childhood cancer.

Reporting in the journal Cell, Alexander Mazo, Ph.D., professor of biochemistry and molecular biology at Jefferson Medical College, Svetlana Petruk, Ph.D., and their co-authors focused on pieces of genetic material called non-coding (nc)RNAs. About two-thirds of the human genome is converted into such RNAs (the better known messenger RNAs are translated into proteins), though the function of the majority is unknown. The researchers detailed a possible mechanism by which ncRNAs briefly control the functioning of homeotic, or HOX, genes, which guide the master developmental plan of the organism.

"We think that this new mechanism operates early in embryogenesis," says Dr. Mazo.

According to Dr. Mazo, the researchers found that one of the likely mechanisms behind ncRNAs' ability to regulate essential coding genes is through a "transcription interference" mechanism. "Such mechanisms are known in bacteria and yeast, but not much is known in higher organisms," he explains.

In the fruit fly, HOX gene activity is maintained by genes and proteins in the Trithorax group (TrxG). These proteins are thought to act through so-called maintenance elements, one of which, in a nearby region, bxd, is located between two HOX genes, Ubx and abd-A. Dr. Mazo explains that several "long" ncRNAs are transcribed through bxd maintenance elements. They were thought to be expressed in the same cells as Ubx, and to regulate HOX gene coding sequence expression. But the researchers found something different: ncRNAs i nstead can repress Ubx activity by blocking its activity in certain types of cells in the developing embryo.

"Importantly, non-coding RNAs are very tightly developmentally regulated, as we show in case of bxd RNAs," Dr. Mazo notes. "These create an enormous potential to regulate the neighboring coding genes in a time- and tissue-specific manner. This is a new type of transcriptional regulation mechanism for higher eukaryotes, and it is very likely that it is conserved in mammals."

Understanding the details of the TrxG system could someday have implications for ALL, a dangerous type of childhood leukemia. The disease stems from gene rearrangements in utero. MLL, the gene that is affected in humans, corresponds to Trithorax in fruit flies. "ALL is thought to be a disease of misregulated HOX genes," says Dr. Mazo.

HOX gene groups have long been known to be "transcriptional regulators" that control the multitude of genes involved in embryonic development, Dr. Mazo says. He and his group would like to ultimately better understand the early stages of such development.


'"/>

Source:Thomas Jefferson University


Related biology news :

1. Jefferson Virologists Coax HIV Out of Hiding
2. Jefferson researchers find nanoparticle shows promise in reducing radiation side effects
3. Jefferson biologist coaxing human embryonic stem cells to make dopamine with simpler, faster method
4. Jefferson scientists identify gene defect leading to abnormal skin development and cancer
5. Jefferson researchers building a better rabies vaccine
6. Jefferson scientists identify gene mutation potentially involved in breast cancer initiation
7. Immune cell communication key to hunting viruses, Jefferson immunologists show
8. Jefferson scientists find aging gene also protects against prostate cancer development
9. Jefferson scientists find high glucose before surgery raises risk of dangerous complications
10. Jefferson researchers discovery may change thinking on how viruses invade the brain
11. Elderly spinal cord injuries increase five-fold in 30 years, Jefferson neurosurgeons find
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/11/2017)... , Apr. 11, 2017 Research and ... Market 2017-2021" report to their offering. ... The global eye tracking market to grow at a ... report, Global Eye Tracking Market 2017-2021, has been prepared based on ... covers the market landscape and its growth prospects over the coming ...
(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
(Date:4/3/2017)... , April 3, 2017  Data ... precision engineering platform, detected a statistically significant ... product prior to treatment and objective response ... the potential to predict whether cancer patients ... to treatment, as well as to improve ...
Breaking Biology News(10 mins):
(Date:5/22/2017)... , ... May 22, 2017 , ... ... with other leaders of the Maryland Biohealth community in developing and issuing recommendations ... Top 3 U.S. BioHealth Innovation Hub by 2023. , The ...
(Date:5/21/2017)... San Diego, CA (PRWEB) , ... May 20, ... ... decision support tool that helps avoid the lengthy trial and error process by ... for patients. It can also strengthen the doctor-patient relationship through a personalized ...
(Date:5/18/2017)... ... May 18, 2017 , ... Dr. Ralph Mobbs ... the Prince Of Wales Private Hospital. The procedure was performed on a 46-year-old ... failed conservative treatments prior to undergoing surgery. , The AxioMed viscoelastic disc is ...
(Date:5/18/2017)... ... 17, 2017 , ... NDA Partners Chairman Carl Peck, MD , announced ... Laboratories and President of Pharmaceutical Development Business Unit of Cardinal Health, has joined the ... Health, he was former Chief Operating Officer at Anaborex, Senior VP and General Manager ...
Breaking Biology Technology: