Navigation Links
It's all in the genes

It's common knowledge that genes control traits such as eye and hair color. But a large group of scientists from two continents has found that the genes of one organism not only control the characteristics of that individual but also dictate the behavior of thousands of other organisms in a community.

They say these genes, in fact, influence the evolution of an entire ecosystem.

"We're pushing a whole new field of research," said lead investigator Tom Whitham, Regents Professor of biological sciences at Northern Arizona University.

It's a field that has not been explored before. After all, the idea of looking at the genes of thousands of species in even a simple community is daunting at best.

"What we've done is zero in on a foundation species, because not all species are as equally important ecologically," Whitham said. The foundation, or key, species in this case is the cottonwood tree, which is the first tree to have all its genes sequenced, or mapped.

Among the genes under study are those that control the level of tannins in cottonwoods, which are dominant trees in riparian habitats in the West. Different individuals, or genotypes, of cottonwoods have different levels of tannins.

These genetically controlled tannin levels drive the structure--or phenotype--of a riparian forest, according to Whitham. Tannins affect the decomposition rate of cottonwood leaves, which in turn affects the fertility of soils, which affects the microbes in the soil, which affect the insects that live in the soil or eat the leaves, which affect the birds that feed on the insects, and so on.

In the July issue of Nature Reviews Genetics and the May issue of Evolution, Whitham and fellow researchers discuss how this phenotype is heritable on an ecosystem level. That is, the progeny of a tree are likely to support the same communities of organisms and ecosystem processes that their parents supported.

It's a premise with far -reaching implications. Consider, for example, conservation efforts to preserve biodiversity in the face of habitat destruction, climate change and other impacts on the environment. Planting trees that are genetically diverse will result in increased diversity of other species in the dependent community. The greater the tree diversity, the greater the chance of associated species surviving environmental degradation.

"It's not enough to save rare and endangered species. We need to save genetic diversity in the foundation species," said Jennifer Schweitzer, a co-author of the Nature Reviews Genetics paper and postdoctoral researcher at NAU. "Having high genetic diversity in these foundation species is insurance against changes in the future."

The research also has ramifications when it comes to genetically modified organisms and their effects on the landscapes in which they are introduced. For example, grasses that are genetically altered to prevent weed growth could pass that resistance along to exotic plants, which then might take over a community and change the evolution of that ecosystem.

More than 50 researchers from the United States, Canada and Australia are studying this genetic driver of community structure and ecosystem evolution. The work is funded by a $5 million Frontiers in Integrative Biological Research grant from the National Science Foundation. The project includes scientists from a multitude of disciplines because, as Whitham says, "No one person has all the skills to do this."

"This is an exciting project with global impact, drawing on the expertise of geneticists, ecologists, molecular biologists, biogeographers and others," said Chris Greer, program director at the National Science Foundation. "The results are expected to not only shed light on how complex biological communities function but to inform efforts to address the impact of human activities, such as landscape fragmentation, on stressed ecosystems across the planet."

The researchers are the first to study the genetic framework of communities and ecosystems in the wild. They have planted several experimental "common gardens" of cottonwoods in Arizona and Utah. The trees are propagated at NAU's research greenhouse. Through DNA fingerprinting, the scientists know the precise genetic makeup of each tree.

In one experiment, Whitham's group worked with the Bureau of Reclamation to plant about 10,000 trees at the Cibola National Wildlife Refuge along the lower Colorado River, about 20 miles south of Blythe, Calif., to examine how genetic diversity at the stand level influences communities and ecosystem processes.

"The Bureau of Reclamation gets restoration out of this project, and we get this incredible experiment," said Whitham.

All of the experiments, so far, have exceeded the researchers' expectations. "Initially we thought that the [genetic influences] would be more localized--that the influences would be less genetic and more environmental as we moved beyond the local common garden setting to all of the western U.S." In the end, however, Whitham said, "Plant genes are far more important than we ever expected them to be."

Now the researchers want to know if their findings hold true in different environments around the world. "To understand how important something is, you have to test in multiple locations," Whitham said.

A parallel study in Australia that examines the eucalyptus tree as the foundation species is yielding the same results as the studies on cottonwoods. And Whitham has just returned from South Africa and Borneo in Southeast Asia, where he is planting the seeds for further study.


'"/>

Source:Northern Arizona University


Related biology news :

1. Scientists document complex genomic events leading to the birth of new genes
2. Advances in the characterisation of the oyster mushroom genes
3. Compounds in plastic packaging act as environmental estrogens altering breast genes
4. Where bacteria get their genes
5. NYU, Rockefeller researchers find complexity of regulation by microRNA genes
6. Exercise training in ordinary people affects the activity of 500 genes
7. Carnegie Mellon University research reveals how cells process large genes
8. Sleeping beauty plays a significant role in identifying cancer genes
9. A dimmer switch for genes
10. MicroRNAs have shaped the evolution of the majority of mammalian genes
11. The earliest animals had human-like genes
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/31/2017)... 31, 2017  Spero Therapeutics, LLC, a biopharmaceutical ... treatment of bacterial infections, today announced it has ... from Pro Bono Bio Ltd (PBB) to bolster ... resistant forms of Gram-negative bacteria.   The assets acquired ... a PBB group company. "The acquisition ...
(Date:1/24/2017)... , Jan. 24, 2017 Biopharm Reports ... the laboratory use of nuclear magnetic resonance spectroscopy ... end-users and profiled current practices, developments, trends and ... well as growth and opportunities. These areas include ... NMR instruments, needs and innovation requirements, hyphenated NMR ...
(Date:1/19/2017)... 2017 Sensory Inc ., a ... for consumer electronics, and i nnerCore ... cybersecurity solutions, today announced a global partnership that ... worldwide to bolster security of data sensitive mobile ... authentication platforms they offer, innerCore now offers its ...
Breaking Biology News(10 mins):
(Date:2/22/2017)... (PRWEB) , ... February 22, 2017 , ... ... that is has acquired Kendall Research Systems, LLC (KRS) clinical development ... that develops neural interface technology for research and clinical applications. The terms of ...
(Date:2/22/2017)... ... February 22, 2017 , ... ... leading medical education provider of women’s health, primary care, and specialty education, ... for Continuing Medical Education (ACCME). ACCME’s Accreditation with Commendation is a six-year ...
(Date:2/22/2017)... Dublin - Research and Markets has ... Market-By Type, By Application, By End User, By Region, By Country: ... ... Market is forecasted to grow at a CAGR of 11.33% during ... crop protection market is driven by the surging demand for less ...
(Date:2/22/2017)... ... February 22, 2017 , ... ... addition of Tom Perkins as European director. Operating from Pennside’s Zurich headquarters, Pennside ... , Perkins joins Pennside after more than a decade with leading market ...
Breaking Biology Technology: