Navigation Links
Islands in the Genome Promote Speciation

Have you ever wondered how the myriad insect forms—beetles, flies, dragonflies, mosquitoes, grasshoppers, ants, wasps, bees, and countless others—evolved?

Insects make up 75% of all species known. The large number of insect species is probably a result of a combination of one or more factors: a high rate of formation of new species, or speciation, an ability to adapt to new environments and exploit new ecological niches, and a lower rate of extinction. Speciation, adaptation, and extinction are all controlled by the interplay between genetic and environmental factors. Understanding the genetic changes that lead to the formation of new species is an important area of research in evolutionary biology.

In a new study, Thomas Turner, Matthew Hahn, and Sergey Nuzhdin worked with the malaria mosquito Anopheles gambiae to uncover genes that may be driving speciation. A. gambiae exists in multiple forms that may be in the early stages of differentiating into separate species; on the other hand, they may be partially differentiated, co-existing races that could give us valuable information on genes responsible for racial differences in mosquitoes. Turner and colleagues focused on two forms, A. gambiae M and A. gambiae S, that sometimes mate and create hybrid forms in nature. While it's unclear whether the forms can produce fertile hybrid offspring in the wild, the progeny of lab matings appear to have no problems with fertility. This suggests that individuals either naturally prefer to mate with others of their own form, or that there must be environmental and/or genetic conditions that are not favorable for the survival of hybrid progeny in nature.

To study the genetic underpinnings of speciation, the researchers used DNA microarrays to identify global differences in the mosquito genomes. Using a combination of gene chips, statistics, and computational biology, Turner and colleagues found that the M and S genomes differ at just three regions. The rese archers suggested that genes present here may be responsible for early speciation. These three “speciation islands?in the genome contain 67 predicted genes. In a preliminary analysis of seven of these genes, Turner and colleagues identified five that are different between the two Anopheles forms; these include genes that play a role in a range of cellular processes, including energy metabolism, response to sudden increases in temperature (heat shock), and ion transport across cell membranes. Future work focusing on the 67 genes hypothesized to reside in the divergent regions should yield interesting clues to the identity of genes that drive speciation, and the mechanism by which they do so.

This is a significant finding in the field of speciation research: in terms of methodology, this study shows that DNA microarrays can be used to identify regions of the genome that are different between two diverging species, allowing researchers to home in on potentially interesting genes. This study also shows that in spite of possible cross-flow of genetic material (natural hybrids between the two forms are found at a low frequency) between two populations, the populations can still be accumulating differences in their genomes—differences that could eventually lead to the formation of new species. Comparing results in Anopheles and the well-studied insect model Drosophila, in which scientists have also started identifying “speciation genes,?should tell us if similar genes are employed repeatedly in different genera during the formation of new species.


'"/>

Source:PLoS Biology


Related biology news :

1. Introduced foxes transformed vegetation on Aleutian Islands from lush grasslands to tundra
2. Pacific Islands paradise protected
3. First Biodiversity Census of coral reef ecosystems in the NW Hawaiian Islands
4. UF scientists discover new genus of frogmouth bird in Solomon Islands
5. Genome of deadly amoeba shows surprising complexity, evidence of lateral gene transfer
6. Affymetrix Unveils Plans to Double Plant and Animal Genome Microarray Offering
7. Genome-wide mouse study yields link to human leukemia
8. New Study from Affymetrix Laboratories Points to Changing View of How Genome Works
9. Multiple Campylobacter Genomes Sequenced
10. Analysis Of Human Genome To Predict The Development Of Illnesses
11. Whole genome promoter mapping - Human Genome Project v2.0?
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/26/2016)... April 27, 2016 Research ... Multi-modal Biometrics Market 2016-2020"  report to their offering.  ... The analysts forecast the global multimodal ... 15.49% during the period 2016-2020.  Multimodal ... sectors such as the healthcare, BFSI, transportation, automotive, ...
(Date:4/13/2016)... 13, 2016  IMPOWER physicians supporting Medicaid patients in ... new clinical standard in telehealth thanks to a new ... higi platform, IMPOWER patients can routinely track key health ... mass index, and, when they opt in, share them ... to a local retail location at no cost. By ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... -- The Prostate Cancer Foundation (PCF) is pleased to announce 24 new ... prostate cancer. Members of the Class of 2016 were selected from a pool ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... STACS DNA Inc., ... Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as a Field ... DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding ...
(Date:6/23/2016)... LONDON , June 23, 2016 ... & Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... Review , the peer-reviewed journal from touchONCOLOGY, ... the escalating cost of cancer care is placing ... a result of expensive biologic therapies. With the ...
Breaking Biology Technology: