Navigation Links
Insects that produce males from unfertilized eggs reveal a surprising cellular feat

Scientists have long known that the social insects in the order Hymenoptera--which includes ants, bees, and wasps--have an unusual mechanism for sex determination: Unfertilized eggs develop into males, while fertilized eggs become females. But the development of an unfertilized egg into an adult (called parthenogenesis) remains a mysterious process.

One mystery has been the origin of the centrosome, an essential cellular component that is ordinarily derived from the sperm after fertilization. A new study led by researchers at the University of California, Santa Cruz, describes a remarkable process by which the egg cells of Hymenopteran insects make new centrosomes from scratch. The process involves enigmatic cellular structures called accessory nuclei, the function of which has not been explained since they were first discovered in the 1960s.

"Centrosomes arise from other centrosomes through duplication, but there is no centrosome in the egg that could give rise to new ones. We found that the accessory nuclei seed the formation of new centrosomes in unfertilized eggs," said Patrick Ferree, a graduate student in molecular, cell, and developmental biology at UCSC.

Ferree is first author of a paper describing the new findings in the April 18 issue of the journal Current Biology. Coauthor William Sullivan, professor of molecular, cell, and developmental biology at UCSC, said the findings have implications for understanding basic cell biology, the evolution of Hymenopteran insects, and centrosomal anomalies in cancer cells. The study also shows just how much remains to be discovered about the diversity of life at the cellular level, he said.

"You would think we'd have identified all the structures in the cell by now, but 90 percent of the material in cell biology textbooks comes from research on nine or ten organisms," Sullivan said. "Every time I look at a honeybee now, I think about these amazing structures they have, and it implies that among the millions of other species there must be cellular mechanisms we haven't even imagined."

Centrosomes help orchestrate cell division, building an apparatus of microtubules called the mitotic spindle, which pulls apart the duplicated chromosomes so that each of the two daughter cells gets a complete set of chromosomes. The centrosome contains about a hundred different proteins, including the main protein for making microtubules, called gamma tubulin.

The UCSC researchers studied the development of centrosomes in the eggs of two parasitic wasps (Nasonia vitripennis and Muscidifurax uniraptor). Using fluorescently labeled antibodies that recognize and bind to gamma tubulin and other centrosomal proteins, they demonstrated the presence of these proteins in accessory nuclei and showed that the accessory nuclei appear to give rise to centrosomes.

Accessory nuclei bud off from the membrane of the nucleus, the cellular structure that contains the chromosomes. By the time the egg is fully developed, it contains several hundred accessory nuclei that look much like the nucleus except that they don't contain chromosomes. Late in the development of the egg cell, the accessory nuclei disintegrate and centrosomes appear in the same locations in the cell.

"Right before the egg is laid, the membranes of the accessory nuclei break down, and at the same time the centrosomes begin to form," Ferree said.

One of the most striking aspects of this mechanism is the large number of accessory nuclei and centrosomes that form in the developing eggs of these Hymenopteran insects.

"You only need two centrosomes, and they make hundreds of them. So they go through a lot of work to make a male," Sullivan said. "A lot of energy goes into making these centrosomes, and if the egg gets fertilized they don't use them--the centrosome from the sperm is used preferentially."

Centrosomes remain somewhat mysterious structures, Ferree said, bu t researchers may be able to learn more about them by purifying accessory vesicles and studying their protein components.

Accessory nuclei have been observed in other species besides Hymenopteran insects, and they may have other functions in addition to making centrosomes, he said. They may also hold clues to the evolutionary origin of the Hymenoptera. Because the males of these insects develop from unfertilized eggs, they have half the number of chromosomes that females have--in technical terms, the males are haploid and the females are diploid.

This situation, known as haplodiploidy, results in interesting genetic relationships that are thought to underlie the complex social behavior of Hymenopteran insects. One of the key steps in the evolution of social insects, therefore, may have been the development of a mechanism for making centrosomes from scratch.

"The Hymenoptera were probably derived from a species that had accessory nuclei, and in the evolution of haplodiploidy the accessory nuclei were co-opted as a way of building centrosomes," Sullivan said.


'"/>

Source:University of California - Santa Cruz


Related biology news :

1. Insects, viruses could hold key for better human teamwork in disasters
2. Insects develop resistance to engineered crops
3. Study Unlocks Insects?Secret for Love in the Dark
4. Insects and mammals share common fat-building pathway, study suggests
5. Inexpensive, mass-produced genes core of synthetic biology advances at UH
6. Researchers devise way to mass-produce embryonic stem cells
7. Stem cells from brain transformed to produce insulin at Stanford
8. Anammox bacteria produce nitrogen gas in oceans snackbar
9. Proteomics brings researchers closer to understanding microbes that produce acid mine drainage
10. Organic farms produce same yields as conventional farms
11. Pollution-eating bacteria produce electricity
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/16/2016)... 16, 2016   IdentyTechSolutions America LLC , ... and solutions and a cutting-edge manufacturer of software ... is offering seamless, integrated solutions that comprise IDT ... The solutions provide IdentyTech,s customers with combined physical ... from crime and theft. "We are ...
(Date:12/15/2016)... ... Markets has announced the addition of the "Global Military Biometrics Market ... the global military biometrics market to grow at a CAGR of 7.5% ... based on an in-depth market analysis with inputs from industry experts. The ... years. The report also includes a discussion of the key vendors operating ...
(Date:12/8/2016)... Research Future published a half cooked research report on Mobile Biometric ... Market is expected to grow over the CAGR of ~35% during ... ... Mobile Biometric Security and Service Market is increasing at a ... security from unwanted cyber threats. The increasing use of mobile device ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... BD (Becton, Dickinson and Company) (NYSE: BDX ), a ... live webcast of its Annual Meeting of Shareholders on Tuesday, January ... can be accessed from the BD corporate website at http://www.bd.com/investors/ ... ... BD is a global medical technology company that is ...
(Date:1/18/2017)... PUNE, India , January 18, 2017 According to ... Application (Cancer Diagnosis, Neuroscience, Cytology, Infectious Disease), & End User (Molecular Diagnostic Laboratories, ... market is expected to reach USD 739.9 Million by 2021 from USD 557.1 ... Continue Reading ... MarketsandMarkets Logo ...
(Date:1/18/2017)... 2017 Applied BioMath ( www.appliedbiomath.com ), ... research and development, today announced that Dr. ... of Applied BioMath, will present at the next ... Meeting on Thursday January 19, 2017 at the ... MA.   Dr. Burke,s talk "Quantitative Modeling and Simulation ...
(Date:1/18/2017)... ... ... Executive search firm Slone Partners proudly supports the SCOPE ... of the clinical trials segment. Hosted in Miami, this conference brings together renowned ... , As executive talent specialists in the industries central to clinical trials, ...
Breaking Biology Technology: