Navigation Links
Inhaling large amounts of salt can cause hypertension

Mathematical models have become invaluable decision-making tools for public health officials. As demonstrated during the United Kingdom's foot-and-mouth epidemic of 2001, models can be useful in two ways: they can reveal the underlying characteristics of an infection and they can allow the comparison of alternative control measures. Often, however, such models make implicit assumptions that may systematically bias their predictions, say researchers at the University of Georgia.

In a paper published today in the online open-access journal PLoS (Public Library of Science) Medicine, Helen Wearing and Pejman Rohani of the Institute of Ecology at the University of Georgia and Matt Keeling of the University of Warwick, United Kingdom, showed that commonly used disease models may risk making overly optimistic predictions about the levels of public health interventions needed to bring a disease under control.

Wearing and her colleagues found that many off-the-shelf models used in infection management do not realistically account for the length of time that people harbor infections. The simplest models entirely ignore the latent period of a disease: the period of time when an individual is infected but not yet infectious. Other models often assume that the rate of progression from latent to infectious, and infectious to recovered, is constant, irrespective of the time already spent in that status. In such models, for example, many people have a very short infectious period while a few have a very long infectious period. In reality, most people are infectious for an average period of time. For the flu the average infectious period is around 4-5 days, with incredibly few people infectious for less than a couple of days or more than a week.

"Models which do not incorporate the latent period or assume unrealistic distributions of the latent and infectious period," said the researchers, "always resulted in underestimating the transmission potential of an in fection when fitted to initial outbreak data."

The idea for the project came about when the Centers for Disease Control and Prevention approached Rohani to assist in the modeling of potential smallpox introduction. "I noticed that when we assumed different distributions of the infectious period in the models, we observed very different epidemic curves," said the researcher. Conversations with Wearing and Keeling followed, alternative models were compared and data from an influenza outbreak were used to illustrate the potential bias in model predictions.

The impact of such differences on predicting the spread of new, highly transmissible diseases could be important to public health workers, said Wearing. Underestimating the transmissibility of an infection could lead to predicting inadequate levels of disease management, such as contact tracing and quarantining of those exposed. However, Wearing was careful to stress that current health protection programs have shown their effectiveness in such situations as the recent SARS outbreak in Southeast Asia.

"We are highlighting what 'may happen' if we don't pay careful attention to the inherent assumptions in the models that we fit to data," said Wearing. "The key point is that uncertainty about the latent and infectious period distributions should be taken into account when making quantitative predictions for public health use."



Related biology news :

1. Scientists discover unique microbe in Californias largest lake
2. Worlds largest rainforest drying experiment completes first phase
3. NASA study finds snow melt causes large ocean plant blooms
4. New project aims to make large-scale lobster farms feasible
5. Butterfly migration could be largest known
6. Amazon symposium to address large-scale conservation
7. Size matters: Preventing large mammal extinction
8. Carnegie Mellon University research reveals how cells process large genes
9. Updated data on novel HPV vaccine confirms efficacy in large population
10. Free-energy theory borne out in large-scale protein folding
11. Cancer cells suppress large regions of DNA by a reversible process that can be tackled
Post Your Comments:

(Date:5/6/2017)... , May 5, 2017 ... just announced a new breakthrough in biometric authentication ... exploits quantum mechanical properties to perform biometric authentication. These ... smart semiconductor material created by Ram Group and ... finance, entertainment, transportation, supply chains and security. Ram ...
(Date:4/18/2017)... Inc., a global expert in SoC-based imaging and computing solutions, has ... features the company,s hybrid codec technology. A demonstration utilizing TeraFaces ® ... be showcased during the upcoming Medtec Japan at Tokyo Big Sight ... Las Vegas Convention Center April 24-27. ... Click here for an image of the ...
(Date:4/13/2017)... 2017 According to a new market research report ... Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region ... expected to grow from USD 14.30 Billion in 2017 to USD 31.75 ... ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... (PRWEB) , ... October 12, ... ... today announces publication of a United States multicenter, prospective clinical study that ... disposable, point-of-care diagnostic test capable of identifying clinically significant acute bacterial and ...
(Date:10/11/2017)... ... October 11, 2017 , ... At its national board meeting ... I. Sheikh, the co-founder, CEO and chief research scientist of Minnesota-based Advanced Space ... membership in ARCS Alumni Hall of Fame . ASTER Labs is a ...
(Date:10/11/2017)... ... 2017 , ... Proscia Inc ., a data solutions ... “Pathology is going digital. Is your lab ready?” with Dr. Nicolas Cacciabeve, Managing ... how Proscia improves lab economics and realizes an increase in diagnostic confidence.* ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... the implantation and pregnancy rates in frozen and fresh in vitro fertilization ... progesterone and maternal age to IVF success. , After comparing the results from ...
Breaking Biology Technology: