Navigation Links
Infants can organise visual information at just four months

Research investigating attention in infancy has revealed that, at just four months old, babies are able to organise visual information in at least three different ways, according to brightness, shape, and how close the visual elements are together (proximity). These new findings mean that very young infants are much more capable of organising their visual world than psychologists had previously thought. The study also has implications for understanding certain developmental disorders such as Williams syndrome.

The findings emerged from Economic and Social Research Council funded research investigating different styles of visual attention in babies from the age of two to eight months. Paying attention to visual stimuli is important in the development of object recognition, and is also needed for the development of memory, motor skills and other key abilities. Led by psychologists Dr Emily Farran at the University of Reading and Dr Janice Brown at London South Bank University, the initial aim of the research was to investigate the underlying reasons why some babies are 'short-lookers' and shift visual attention rapidly, while others are 'long-lookers' who keep their attention fixed for longer.

Previously, these categories were thought to be relatively stable traits indicative of individual differences, with links to later cognitive development. However, the research revealed that babies often move between these two categories over the timescale studied. "The literature talks about the short-looking and long-looking categories, and links to later abilities are suggested. Unusually, we looked at this longitudinally, so we were able to pick up that these categories weren't stable" says Dr Farran. "So these differences can't be indicative of differential brain development, or predictive of later abilities."

Some of the research was designed to test whether infants are able to organise visual stimuli into groups based on similar attributes: bright ness, shape, and proximity. To take part in the visual grouping experiments, each baby was placed in a car seat facing a screen onto which images were projected. Overhead cameras recorded how long each infant looked at images on the screen. The infants were shown an array where the stimuli were arranged by similarity in either horizontal lines or vertical columns. For example, for grouping by shape, an array of horizontal lines (or vertical columns) made up of squares and circles was used, constructed so that shape discrimination would be needed to 'see' lines or columns in the array. To test if visual grouping had occurred, images of plain bars of horizontal lines and vertical columns were then shown. If the infants looked for a longer time at either the line or column bars on average, this would indicate an effect of the earlier lines or columns made up of squares and circles, indicating grouping.

The results showed that grouping by brightness emerges first: it was observed at two months, in line with previous observations that this ability is present in newborn babies. At four months, two further grouping abilities emerged: grouping by shape and by proximity. Proximity grouping had not been tested in infants prior to this research, and grouping by shape had previously been seen only at six or seven months.

Dr Farran argues that it's important to understand the development of low-level processes such as attention from early on in order to understand how higher-level processes such as object recognition ?which requires grouping by several different visual characteristics ?develop. But the researchers also have a further interest: having established this pattern of development in normal infants, they intend to turn their attention to what happens in infants affected by developmental disorders. The research group already has a new ESRC-funded project under way with Williams syndrome infants ?a condition where attention and visual perception are parti cularly affected.

Visual grouping research, Dr Farran argues, is essential to providing a proper starting point for the new research. "In many atypical disorders, people look at what's happening in adults and assume that the same patterns of performance would be observed in children", says Dr Farran. "But often there are quite different patterns. In cognitive development, small differences can cascade over time, so it's very important to get a grip on what's going on at the start and how it develops longitudinally, so we can see how the developmental trajectory grows."

According to Dr Farran, until recently Williams syndrome children were rarely diagnosed at an early enough stage. Now diagnosis is often earlier, plus there is a genetic test ?but interventions are still something for the future. "If we can find out about cognitive development from infancy onwards in today's Williams syndrome children, the next generation will benefit from this", she predicts.


Source:Economic & Social Research Council

Related biology news :

1. Infants With Rare Genetic Disease Saved by Cord Blood Stem Cells
2. Infants with Rare Genetic Disease Saved By Cord Blood Stem Cells
3. Antiretroviral Therapy May Prevent HIV Transmission From Breastfeeding Mothers To Infants
4. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
5. Rhesus monkeys can assess the visual perspective of others when competing for food
6. Brains response to visual stimuli helps us to focus on what we should see, rather than all there is to see
7. A new window into structural plasticity in the adult visual cortex
8. Movement of chromosome in nucleus visualized
9. U of MN researchers develop way to visualize synchronized interactions of nerve cells in the brain
10. Biologists visualize protein interaction that may initiate viral infection
11. New GI technologies improve internal organ visualization
Post Your Comments:

(Date:11/18/2015)... New York , November 18, 2015 ... Market Research has published a new market report titled ... Growth, Trends, and Forecast, 2015 - 2021. According to the ... in 2014 and is anticipated to reach US$29.1 bn ... to 2021. North America ...
(Date:11/16/2015)... 16, 2015  Synaptics Inc. (NASDAQ: SYNA ... today announced expansion of its TDDI product portfolio ... controller and display driver integration (TDDI) solutions designed ... new TDDI products add to the previously-announced ... (WQHD resolution), and TD4322 (FHD resolution) solutions. All ...
(Date:11/10/2015)... , Nov. 10, 2015  In ... on the basis of product, type, application, ... included in this report are consumables, services, ... report are safety biomarkers, efficacy biomarkers, and ... this report are diagnostics development, drug discovery ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... Today the Allen Institute announced the opening of its ... Lake Union neighborhood, the city,s biotechnology hub. Located on ... North, the 270,000 square foot life sciences building is ... the Allen Institute for Cell Science. Paul ... Institute. "We started by building a map of the ...
(Date:12/1/2015)... Dec. 1, 2015 Oxford Finance LLC ("Oxford"), ... life sciences and healthcare services companies, today announced the ... with MDRejuvena, Inc. ("the Company"). Proceeds from the loan ... of the Company,s Rejuvaphyl™ and daily skincare products. ... the MDRejuvena brand of high potency skincare products that ...
(Date:12/1/2015)... (PRWEB) , ... December 01, 2015 , ... ... (AFM) announces Park NX10 SICM Module, an add-on scanning ion conductance microscopy module ... power of SICM to an AFM. , Park SICM benefits virtually all materials ...
(Date:12/1/2015)... Cepheid (Nasdaq: CPHD ) today announced ... Jaffray Healthcare Conference in New York City ... its outlook for the fourth quarter of 2015 and ... longer term business model expectations. John Bishop ... to be the fastest growing company of the major ...
Breaking Biology Technology: