Navigation Links
Image of myosin-actin interaction revealed in cover story of Molecular Cell

Scientists from the Burnham Institute for Medical Research and the University of Vermont have captured the first 3-dimensional (3D) atomic-resolution images of the motor protein myosin V as it "walks" along other proteins, revealing new structural insights that advance the current model of protein motility and muscle contraction. The culmination of four years of work, this collaboration among biochemists and structural biologists was selected as the cover story for the September issue of the scientific journal Molecular Cell.

The Burnham team, led by Dorit Hanein, Ph.D., was the first to reveal the 3D representation of myosin V "walking" along actin filament, a key protein involved in motility and muscle contraction. Using electron-cryo microscopy to take 3D snapshots of myosin V and actin interacting, researchers were able to see myosin V moving along the actin substrate in a "natural state." Previous 2D models have been based on staining or other treatment of the myosin that might alter the complex's natural mechanism of action.

Myosins are a large family of motor proteins that interact with actin filaments for motor movement and muscle contraction. Myosin V is the workhorse of the myosin protein family. It exists to ferry a cargo of proteins needed in a specific place at a specific time. Fueled by hydrolysis -- the process of converting the molecule adenosine triphosphate (ATP) into energy -- myosin V travels in one direction using actin as a track to deliver its payload of cell vesicles and organelles. Myosin V is also involved in transporting proteins that signal and communicate with other cells.

Myosin V has a two-chained "tail" that diverges to form two "heads" that bind to specific grooves on actin and walk hand over hand along the track, similar to the way a child moves along the monkey bars in a playground. Myosin V differs from the other myosin family proteins in that it is able to sustain this processive motion, enduring man y hydrolysis cycles. The other myosins grab on tightly to actin and release after one hydrolysis cycle.

"This study required a different way of thinking about image analysis. This is the first time we were able to structurally visualize the weak binding states of actin and myosin, not interpolated from crystal structures, and not interpolated from biophysical methods," said Dr. Hanein. "We were able to see structural changes in the myosin lever arm as well as in the actin interface as it propagates through the hydrolysis cycle."

Structural information from previous studies provided information about parts of this process, but until the present collaboration, visualizing Myosin V in its weakly bound state to actin had not been possible. The Hanein group captured snapshots of Myosin V at several points during a hydrolysis cycle. Their use of electron cryo-microscopy made it possible to visualize flexible structural domains, which tether the Myosin V, helping to keep the protein on its actin track through the weak binding phase of the processive movement.

The detailed molecular knowledge of how myosin interacts through the hydrolysis cycle with actin provides an exciting new research template onto which scientists can design new sets of experiments to further refine the myosin-actin binding region and to correlate it with loss or gain of function. The precise characterization of this myosin-actin interface is critical, evident by the way a single amino acid change in myosin leads to familial hypertrophic cardiomyopathy (FHC), an undetectable condition resulting in death by sudden cardiac arrest in otherwise healthy young adults.

Contributors to this work include: Niels Volkmann, Ph.D., assistant professor and first author on this publication, Dorit Hanein, Ph.D., associate professor, Hong-Jun Liu and Larnele Hazelwood from the Burnham Institute for Medical Research; and Kathleen M. Trybus, Ph.D., Susan Lowey, Ph.D., and Elena B. Kremen stova, Ph.D., from the Department of Molecular Physiology and Biophysics at the University of Vermont.

Functional, biochemical assays were conducted by collaborators from the University of Vermont, directed by Kathleen Trybus, Ph.D.


'"/>

Source:Burnham Institute


Related biology news :

1. Virus-host interactions at sea effect global photosynthesis
2. Future diabetes drugs may target new protein interaction
3. Computational verification of protein-protein interactions by orthologous co-expression
4. Confirmation of human protein interaction data by human expression data
5. Physical and functional interaction of key cell growth molecules linked to cancer
6. Complex gene interactions account for autism risk
7. A real time look at interactions between RNA and proteins
8. U of MN researchers develop way to visualize synchronized interactions of nerve cells in the brain
9. Biologists visualize protein interaction that may initiate viral infection
10. Biologists develop genome-wide map of miRNA-mRNA interactions
11. Mans best friend: Study shows lonely seniors prefer playtime with pooch over human interaction
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/24/2017)... Mar 24, 2017 Research and Markets has ... Market Analysis & Trends - Industry Forecast to 2025" report ... ... at a CAGR of around 15.1% over the next decade to ... report analyzes the market estimates and forecasts for all the given ...
(Date:3/22/2017)...   Neurotechnology , a provider of high-precision ... the release of the SentiVeillance 6.0 ... recognition using up to 10 surveillance, security and ... new version uses deep neural-network-based facial detection and ... a Graphing Processing Unit (GPU) for enhanced speed. ...
(Date:3/20/2017)... March 20, 2017 At this year,s CeBIT Chancellor ... biometrics manufacturer DERMALOG. The Chancellor came to the DERMALOG stand together with ... this year,s CeBIT partner country. At the largest German biometrics company the ... fingerprint, face and iris recognition as well as DERMALOGĀ“s multi-biometrics system.   ... ...
Breaking Biology News(10 mins):
(Date:3/29/2017)... VA (PRWEB) , ... March 29, 2017 , ... ... wearable patch comprising multiple separable adhesive layers, as issued by the U.S. Patent ... layers as it applies to combining electronics and health monitoring. This invention will ...
(Date:3/29/2017)... 29, 2017 "Surging application of gesture control ... government are expected to drive the growth of gesture ... recognition market is expected to be worth USD 18.98 ... between 2017 and 2022. The touchless sensing market is ... growing at a CAGR of 17.44% between 2017 and ...
(Date:3/29/2017)... ... 2017 , ... ComplianceOnline, the leading governance, risk and compliance advisory network with ... Summit 2017 venue and speaker lineup. The Summit will take place on June 8 ... Omni Parker House Hotel, which is located at 60 School Street, Boston, MA will ...
(Date:3/29/2017)... ... March 29, 2017 , ... Cancer diagnostics and pathology workflow ... at the Association of Community Cancer Centers (ACCC) 43rd Annual Meeting, CANCERSCAPE ... unites key stakeholders from leading national organizations to share insights on how value-based ...
Breaking Biology Technology: