Navigation Links
Humpback whales have brain cells also found in humans

Cetaceans, the group of marine mammals that includes whales and dolphins, have demonstrated remarkable auditory and communicative abilities, as well as complex social behaviors. A new study published online November 27, 2006 in The Anatomical Record, the official journal of the American Association of Anatomists,compared a humpback whale brain with brains from several other cetacean species and found the presence of a certain type of neuron cell that is also found in humans. This suggests that certain cetaceans and hominids may have evolved side by side. The study is available online via Wiley InterScience at http://www.interscience.wiley.com/journal/ar.

Although the biology of the humpback whale is well understood, there have been virtually no studies published on its brain composition, leaving an open question as to how brain structure may relate to the extensive behavioral and social abilities of this mammal. Although brain to body mass ratio, a rough measure of intelligence, is lower for baleen whales such as the humpback compared to toothed whales such as dolphins, the structure and large brain size of baleen whales suggests that they too have a complex and elaborate evolutionary history.

Patrick R. Hof and Estel Van der Gucht of the Department of Neuroscience at Mount Sinai School of Medicine in New York, NY, examined the brain of an adult humpback whale and compared it with the brain of a fin whale (another baleen species) and brains from several toothed whales, including three bottlenose dolphins, an Amazon river dolphin, a sperm whale, two beluga whales, a killer whale and several other whale and dolphin species. They found that the humpback cerebral cortex, the part of the brain where thought processes take place, was similar in complexity to smaller sized cetaceans such as dolphins. The large area of cortex found in these mammals is thought to be related to acoustic capabilities and the current study shows that it is organized into a system of core and belt regions. However, substantial variability was found between the cell structure of the cortex in humpbacks compared to toothed whales. The authors suggest that these differences may indicate differences in brain function and behavior in aquatic species that are not yet understood.

One feature that stood out in the humpback whale brain was the modular organization of certain cells into "islands" in the cerebral cortex that is also seen in the fin whale and other types of mammals. The authors speculate that this structural feature may have evolved in order to promote fast and efficient communication between neurons. The other notable feature was the presence of spindle cells in the humpback cortex in areas comparable to hominids and in other areas of the whale brain as well. Although the function of spindle neurons is not well understood, they are thought to be involved in cognitive processes and are affected by Alzheimer's disease and other debilitating brain disorders such as autism and schizophrenia. Spindle neurons were also found in the same location in toothed whales with the largest brains, which suggests that they may be related to brain size.

The authors note that spindle neurons probably first appeared in the common ancestor of hominids about 15 million years ago, since they are observed in great apes and humans, but not in lesser apes and other primates; in cetaceans they evolved earlier, possibly as early as 30 million years ago. It is possible that they were present in the ancestors of all cetaceans, but were retained only in those with the largest brains during their evolution. It may also be that they evolved several times independently in the two cetacean suborders; part of this process may have taken place at the same time as they appeared in the ancestor of great apes, which would be a rare case of parallel evolution.

"In spite of the relati ve scarcity of information on many cetacean species, it is important to note in this context that sperm whales, killer whales, and certainly humpback whales, exhibit complex social patterns that included intricate communication skills, coalition-formation, cooperation, cultural transmission and tool usage," the authors state. "It is thus likely that some of these abilities are related to comparable histologic complexity in brain organization in cetaceans and in hominids."

The authors conclude: "Cetacean and primate brains may be considered as evolutionary alternatives in neurobiological complexity and as such, it would be compelling to investigate how many convergent cognitive and behavioral features result from largely dissimilar neocortical organization between the two orders." They also suggest that the current study provides a framework for further investigations into the brain and behavior of cetaceans, which are naturally elusive, poorly documented and often endangered.
'"/>

Source:John Wiley & Sons, Inc.


Related biology news :

1. The secret lives of whales
2. Habitat use by North Pacific right whales, Eubalaena japonica, in the Bering Sea and Gulf of Alaska
3. Warbling whales speak a language all their own
4. Research tracks whales by listening to sounds
5. Underwater listening devices yield discoveries about endangered large whales
6. Ecologists home in on how sperm whales find their prey
7. How ancient whales lost their legs, got sleek and conquered the oceans
8. Save the whales? Sure, but how many?
9. Saving endangered whales at no cost
10. Tracking sperm whales and jumbo squid
11. DNA analysis suggests under-reported kills of threatened whales

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/24/2017)... March 24, 2017 The Controller General of Immigration ... Abdulla Algeen have received the prestigious international IAIR Award for ... Continue Reading ... ... Deputy Controller Abdulla Algeen (small picture on the right) have received the ...
(Date:3/23/2017)... , March 23, 2017 The report "Gesture Recognition and ... Industry, and Geography - Global Forecast to 2022", published by MarketsandMarkets, the market ... CAGR of 29.63% between 2017 and 2022. Continue ... ... ...
(Date:3/22/2017)... VILNIUS, Lithuania , March 21, 2017 /PRNewswire/ ... identification and object recognition technologies, today announced the ... development kit (SDK), which provides improved facial recognition ... safety cameras on a single computer. The new ... algorithms to improve accuracy, and it utilizes a ...
Breaking Biology News(10 mins):
(Date:8/16/2017)... ... 16, 2017 , ... Tunnell Consulting announced today that four of ... Annual Meeting and Expo , to be held October 29 through November 1 in ... innovation to advance patient therapies.” , The ISPE Annual Meeting and Expo will feature ...
(Date:8/16/2017)... ... 2017 , ... Today, 3Bar Biologics Inc ., the ... funding from an impressive group of investors, including Rev1 Ventures, Maumee Ventures, Ohio ... investment, 3Bar is broadening availability of its groundbreaking offering that uses naturally occurring ...
(Date:8/15/2017)... After spending the past two years building a state-of-the-art ... GeneFo now offers this platform to healthcare stakeholders (hospitals, foundations, biopharma ... and data collection vis a vis their members, under their own ... of this offer. ... ...
(Date:8/15/2017)... ... 2017 , ... Any expert in stem cell research or stem cell medicine ... half a century. Despite their essential roles in human health and regenerative medicine, ... tags developed for this purpose also tag other, more abundant, non-stem tissue cells ( ...
Breaking Biology Technology: