Navigation Links
Human stem cell treatment restores motor function in paralyzed rats

Rats paralyzed due to loss of blood flow to the spine returned to near normal ambulatory function six weeks after receiving grafts of human spinal stem cells (hSSCs), researchers from the University of California, San Diego (UCSD) School of Medicine report. The study, led by Martin Marsala, M.D., UC San Diego professor of anesthesiology, is published in the June 29, 2007 issue of the journal Neuroscience, which is now online.

“We demonstrated that when damage has occurred due to a loss of blood flow to the spine’s neural cells, by grafting human neural stem cells directly into the spinal cord we can achieve a progressive recovery of motor function,” said Marsala. “This could some day prove to be an effective treatment for patients suffering from the same kind of ischemia-induced paralysis.” Marsala is currently testing the human stem cell therapy for safety and efficacy in other animal models, and hopes to move to clinical trials in humans by next year.

Paraplegia from spinal cord ischemia is a serious complication that occurs in 20 to 40 percent of patients undergoing a surgical process called aortic cross-clamping. When the surgeon works on the aorta, a major blood vessel, to correct a potentially lethal aneurysm, blood flow from the heart must be temporarily blocked with a clamp. After 30 minutes, this lack of blood flow can result in the death of specialized spinal cord neurons called spinal inhibitory neurons, leading to irreversible spasticity and rigidity, or loss of muscle control, in the lower limbs, even though the spinal cord is intact.

“The important difference between spinal cord ischemia and spinal cord trauma, such as might occur in a diving or car accident, is that in the ischemia model, no mechanical damage has occurred to the spinal cord,” said Marsala. “The spinal cord and brain motor centers are still partially connected, but there has been a selective loss of inhibitory neurons in the spinal cord. Since th ese cells are necessary for coordinated motor activity, our research aims to replace these lost neurons by grafting new spinal stem cells, which repopulates the pool of degenerated neurons.”

For this study, nine of 16 rats with induced spinal cord ischemia were injected with human spinal stem cells 21 days after paralysis. The other seven were injected with medium that contained no stem cells. The recovery of motor function was evaluated in seven-day intervals, showing a progressive recovery of ambulatory functions in the rats that received stem cells.

Three of the nine rats injected with hSSCs returned to walking at six weeks, and three others had improved mobility in all lower extremity joints. All nine animals grafted with hSSCs achieved significantly better motor scores than those in the control group, and showed a consistent presence of transplanted cells in the spinal area. In all the rats grafted with the stem cells, the majority of transplanted human spinal stem cells survived and became mature neurons, according to Marsala. A second study was conducted over a three-month period, with similar results.

“Other human stem cell transplants in the spinal cord have focused on repairing the myelin-forming cells,” said co-author Karl Johe, a researcher at Neuralstem, the company that manufactures the hSSCs used in the study. “In this study, we succeeded at reconstructing the neural circuitry, which had not been done before.”

The researchers believe that the therapy may eventually be proven even more effective in human patients, who would be able to receive physical therapy once treated.

“Physical therapy may accelerate integration of the grafted stem cells and enhance their therapeutic benefit,” Johe said, adding that the goal is to provide a significant gain in functional mobility of the patient’s legs.

This study builds on Marsala’s previous work in rat models using human neuronal stem cells, publishe d in October 2004 in the European Journal of Neurosciences. In that study, significantly improved motor function, measured by a suppression of spastic movements and improved muscle tone, was shown in 40 to 50 percent of the animals tested. A post-mortem study of those animals showed a robust maturation of neurons and an increase in the expression of inhibitory neurotransmitters in the spinal cords of rats that received transplanted neuronal cells.

Current treatment for debilitating muscle spasticity is continuous systemic or spinal drug treatments using implanted pumps. These approaches, while effective to a degree, are often accompanied by side effects and eventual drug tolerance that lessens their efficacy.

“These research findings could offer great hope to people with spinal ischemic injury who suffer from resulting spasticity and rigidity,” said Marsala.


'"/>

Source:University of California - San Diego


Related biology news :

1. FDA Approves Human Hookworm Vaccine for Phase I Safety Trials
2. New Clues Add 40,000 Years to Age of Human Species
3. Human Cells Filmed Instantly Messaging for First Time
4. Govt Creates Gene Database of Normal Human Tissues
5. Analysis Of Human Genome To Predict The Development Of Illnesses
6. Human Eggs Can Develop From Ovarian Surface Cells In Vitro
7. Determining The Fate Of Cells In The Human Body
8. Whole genome promoter mapping - Human Genome Project v2.0?
9. Human embryonic stem cells have the potential to develop into eggs and sperm in the laboratory
10. Going To Extremes To Improve Human Health
11. Human brain is still evolving

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/13/2017)... April 13, 2017 UBM,s Advanced Design and ... will feature emerging and evolving technology through its 3D ... will run alongside the expo portion of the event ... and demonstrations focused on trending topics within 3D printing ... and manufacturing event will take place June 13-15, 2017 at ...
(Date:4/11/2017)... April 11, 2017 Crossmatch®, a globally-recognized ... solutions, today announced that it has been awarded ... Projects Activity (IARPA) to develop next-generation Presentation Attack ... "Innovation has been a driving force within ... will allow us to innovate and develop new ...
(Date:4/11/2017)... , April 11, 2017 No two ... researchers at the New York University Tandon School ... Engineering have found that partial similarities between prints ... used in mobile phones and other electronic devices ... The vulnerability lies in the fact that ...
Breaking Biology News(10 mins):
(Date:4/21/2017)... ... April 21, 2017 , ... The impressively ... focus of researchers, engineers, product developers, and industry suppliers gathered last week for ... SPIE, the international society for optics and photonics , the event drew ...
(Date:4/21/2017)... ... , ... Frederick Innovative Technology Center, Inc. (FITCI), a business ... earned a $77,518 grant from the Rural Maryland Council (RMC) to support refurbishment ... first incubator. A non-profit corporation, FITCI is a public-private partnership of the governments ...
(Date:4/20/2017)... April 20, 2017  Eli Lilly and Company (NYSE: ... evaluating galcanezumab for the prevention of migraine at the ... take place April 22-28, 2017, in Boston ... abstracts at AAN, including safety and patient outcomes data ... with a reduction in monthly migraine headache days among ...
(Date:4/20/2017)... Kong (PRWEB) , ... April 20, 2017 , ... NetDimensions ... Global Sales. , With over 20 years of experience in the learning technologies industry, ... a sister company within Learning Technologies Group plc (LTG). At LEO, Mastin served as ...
Breaking Biology Technology: