Navigation Links
Human embryonic stem cells have the potential to develop into eggs and sperm in the laboratory

Scientists in the UK have proved that human embryonic stem cells can develop in the laboratory into the early forms of cells that eventually become eggs or sperm. Their work opens up the possibility that eggs and sperm could be grown from stem cells and used for assisted reproduction, therapeutic cloning and the creation of more stem cells for further research and for the improved treatments for patients suffering from a range of diseases.

Behrouz Aflatoonian will tell the 21st annual conference of the European Society of Human Reproduction and Embryology today (Monday 20 June) that the research also solves the practical and ethical problems associated with obtaining human samples of primordial germ cells (PGCs), which are the ancestral cells that eventually form eggs and sperm (gametes). "Investigating the mechanisms of human primordial germ cell and gamete development is important for understanding the causes of infertility and the potential harmful effects of environmental chemicals on reproductive development," he will say. "But at present it is very difficult to obtain human samples of these cells as they only occur early in development."

Mr Aflatoonian, who is a PhD student in Professor Harry Moore's laboratory at the Centre for Stem Cell Biology, University of Sheffield, UK, said that studies with mice embryonic stem cells had shown that they were capable of differentiating into PGCs and subsequently eggs and sperm, so he set out to see if the same applied to human embryonic stem cells (HESCs).

"We derived six embryonic stem cell lines from embryos donated for research under HFEA regulations by couples undergoing IVF treatment. In addition, we utilised cell lines from the University of Wisconsin.

"The human embryonic stem cells were allowed to develop into collections of cells called embryoid bodies. The embryoid bodies were tested to see which genes were active, or 'expressed', in them and it was found that within two weeks a v ery tiny proportion of cells in the embryoid bodies began to express some of the genes that are found in human primordial germ cells. Some cells also expressed proteins only found in maturing sperm. This suggests that HESCs may have the ability to develop into PGCs and early gametes as has been shown previously for mouse embryonic stem cells."

However, Mr Aflatoonian stressed that there was still a lot of work to be done before the promise of these early results could be translated into reality. "Embryoid bodies can differentiate into all sorts of tissue types, so we need to choose the cells that are going to develop into PGCs and then work out how we can encourage them to grow into gametes.

"Producing functional gametes is much more difficult, because we have to recreate for the cultured cells the environment of the developing follicle for egg development or the tissue of the testis for sperm. We want to test whether HESCs can differentiate to cells that produce the hormones for sperm and egg development and isolate these as well. What is extraordinary is that the embryoid bodies seem to produce spontaneously the tissue and environment conducive for sperm and egg development in quite a short time in culture."

Speaking before the conference, Prof Moore said: "One of the reasons for doing this research is that it may allow us to investigate the very earliest processes of how a human gamete and gonad (ovary and testis) develops. Many scientists believe that environmental chemical pollutants that mimic the action of hormones (so called endocrine disrupting chemicals) might interfere with human development at this stage and cause congenital abnormalities, infertility and possibly cancer (in particular testicular cancer). By developing suitable tests with embryonic stem cells as they differentiate to germ cells we can investigate the action of these chemicals in the laboratory.

"Ultimately it might be possible to produce sperm and eggs for use in assisted conception treatments. This is a long way off and we would have to prove it was safe because, for example, the culture process may cause genetic changes. For some men and women this would be the only route for producing sperm and eggs. It would not be reproductive cloning as fertilisation would involve only one set of gametes produced in this way and therefore a unique embryo would form.

"In addition, if we could produce eggs from HESCs they could also be used for therapeutic cloning (somatic nuclear replacement) circumventing the need for eggs from patients who donate them, as this is a major limitation of this technique at the moment. We would then have completed the circle of making HESCs from eggs that came from HESCs ?what came first the chicken or the egg?!"


Source:European Society for Human Reproduction and Embryology

Related biology news :

1. FDA Approves Human Hookworm Vaccine for Phase I Safety Trials
2. New Clues Add 40,000 Years to Age of Human Species
3. Human Cells Filmed Instantly Messaging for First Time
4. Govt Creates Gene Database of Normal Human Tissues
5. Analysis Of Human Genome To Predict The Development Of Illnesses
6. Human Eggs Can Develop From Ovarian Surface Cells In Vitro
7. Determining The Fate Of Cells In The Human Body
8. Whole genome promoter mapping - Human Genome Project v2.0?
9. Going To Extremes To Improve Human Health
10. Human brain is still evolving
11. Human cerebellum and cortex age in very different ways
Post Your Comments:

(Date:11/12/2015)... , Nov. 12, 2015  Arxspan has ... of MIT and Harvard for use of its ... information management tools. The partnership will support the ... biological and chemical research information internally and with ... be used for managing the Institute,s electronic laboratory ...
(Date:11/10/2015)...  In this report, the biomarkers market ... type, application, disease indication, and geography. The ... consumables, services, software. The type segments included ... biomarkers, and validation biomarkers. The applications segments ... drug discovery and development, personalized medicine, disease ...
(Date:11/9/2015)... Nov. 9, 2015  Synaptics Inc. (NASDAQ: SYNA ... announced broader entry into the automotive market with a ... the pace of consumer electronics human interface innovation. Synaptics, ... ideal for the automotive industry and will be implemented ... Europe , Japan , ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... N.C. , Nov. 24, 2015  Clintrax Global, Inc., a ... North Carolina , today announced that the company has set ... represented a 391% quarter on quarter growth posted for Q3 of ... and Mexico , with the establishment ... in December 2015. --> United Kingdom ...
(Date:11/24/2015)... , November 24, 2015 ... market research report released by Transparency Market Research, the ... at a CAGR of 17.5% during the period between ... Market - Global Industry Analysis, Size, Volume, Share, Growth, ... non-invasive prenatal testing market to reach a valuation of ...
(Date:11/24/2015)... ... 2015 , ... InSphero AG, the leading supplier of easy-to-use solutions for production, ... to serve as Chief Operating Officer. , Having joined InSphero in November ... and was promoted to Head of InSphero Diagnostics in 2014. There she has ...
(Date:11/24/2015)... , Nov. 24, 2015  PDL BioPharma, Inc. (PDL) (NASDAQ: ... , the company,s president and chief executive officer, will present ... next week in New York City . ... Tuesday, December 1, 2015 at 9:30 a.m. EST. ... to the website at least 15 minutes prior to the ...
Breaking Biology Technology: