Navigation Links
How taste response is hard-wired into the brain

Instantly reacting to the sweet lure of chocolate or the bitter taste of strychnine would seem to demand that such behavioral responses be so innate as to be hard-wired into the brain. Indeed, in studies with the easily manipulable fruit fly Drosophila, Kristin Scott and colleagues reported in the January 19, 2006, issue of Neuron experiments demonstrating just such a hard-wired circuitry.

Their findings, they said, favor a model for taste encoding in the brain that holds that specific cells are dedicated to detecting specific tastes. Competing models hold that multiple neurons combine information to encode taste, or that the timing of patterns of taste information encodes taste.

In their studies, the researchers explored the behavioral effects of activating fly taste neurons that had either of two chemical taste receptors on their surface. In earlier studies, the researchers had shown that the Gr5a receptor on taste neurons was essential for response to sugar and that the Gr66a receptor was essential for response to bitter tastes. However, those studies left open the question of whether those different neurons selectively detected the different tastes and whether they generated taste behaviors.

To directly monitor taste responses of the flies, the researchers generated flies with fluorescent labels on their neurons that would signal activation of one or the other type. They used microscopic imaging through tiny windows in the fly brains to watch neuronal response when they exposed the flies to sweet or bitter chemicals

They found that a whole range of sweet substances selectively switched-on the Gr5a neurons, while a range of bitter substances switched-on the Gr66a neurons. However, the "sweet neurons" did not respond to bitter substances, and vice versa.

In behavioral studies, they found that flies preferred to spend time tasting substances that activated the Gr5a neurons and avoided substances that activated Gr66a neurons.< /p>

In the most telling experiments, the researchers engineered flies so that the hot pepper compound capsaicin would selectively switch-on either the sweet-detecting Gr5a neurons or the bitter-detecting Gr66a neurons. Normal flies do not respond to the hot pepper taste.

The researchers found that flies engineered to recognize capsaicin on the sweet-tasting neurons were attracted to the chemical, while those that recognized it as a bitter taste avoided it.

"In this paper, we demonstrate that these taste cells selectively recognize different taste modalities, such that there is functional segregation of taste qualities in the periphery and at the first relay in the brain," concluded the researchers. "Moreover, we show that activation of these different taste neurons is sufficient to elicit different taste behaviors. Thus, activity of the sensory neuron, rather than the receptor, is the arbiter of taste behavior.

Our studies argue that animals distinguish different tastes by activation of dedicated neural circuits that dictate behavioral outputs," they wrote.


'"/>

Source:Cell Press


Related biology news :

1. Childrens taste sensitivity and food choices influenced by taste gene
2. Evolution of taste receptor may have shaped human sensitivity to toxic compounds
3. Bad aftertaste? New sensory on/off switch may cure bane of artificial sweetener search
4. Bitter or sweet? The same taste bud can tell the difference
5. Have a taste for fat? Yes! A sensor in the mouth promotes preference for fatty foods
6. Living taste cells produced outside the body
7. Great (taste) expectations: Study shows brain anticipates taste, shifts gears
8. Sweet water taste paradoxically predicts sweet taste inhibitors
9. Variation in bitter-taste receptor gene increases risk for alcoholism
10. Scientists solve sour taste proteins
11. Tastes great! Study shows brains response to pleasing -- and changing -- tastes
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:8/23/2017)... N.Y. , Aug. 23, 2017  The general public,s help is ... human microbiome—the bacteria that live in and on the human body –and ... The ... in the human microbiome, starting with the gut. The project's goal is ... disease. Photo credit: IBM ...
(Date:6/14/2017)... IBM ) is introducing several innovative partner startups at ... between startups and global businesses, taking place in ... startups will showcase the solutions they have built with IBM ... France is one of the most ... increase in the number of startups created between 2012 and ...
(Date:4/24/2017)... -- Janice Kephart , former 9/11 Commission ... LLP (IdSP) , today issues the following statement: ... 6, 2017 Executive Order: Protecting the Nation ... instilled with greater confidence, enabling the reactivation of ... are suspended by until at least July 2017). ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... Iowa (PRWEB) , ... October 12, 2017 , ... ... based in Vilnius, Lithuania, announced today that they have entered into a multiyear ... is to provide CRISPR researchers with additional tools for gene editing across all ...
(Date:10/12/2017)... Irvine, ca (PRWEB) , ... October 12, 2017 ... ... for the Surgical Wound Market with the addition of its newest module, US ... the $1.2B market for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... first-ever genomics analysis platform specifically designed for life science researchers to analyze ... pioneering researcher Rosalind Franklin, who made a major contribution to the discovery ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... gene in its endogenous context, enabling overexpression experiments and avoiding the use of ... small RNA guides is transformative for performing systematic gain-of-function studies. , This ...
Breaking Biology Technology: