Navigation Links
How brain pacemakers erase diseased messages

Brain "pacemakers" that have helped ease symptoms in people with Parkinson's disease and other movement disorders seem to work by drowning out the electrical signals of their diseased brains.

Despite the clinical success of the devices, which have been approved by the Food and Drug Administration and can be found in the heads of about 30,000 Americans, the mechanisms by which deep brain stimulation alleviates disease symptoms aren't well understood.

Biomedical engineers at Duke University's Pratt School of Engineering have found that stimulation administered by rapid-fire electrical pulses deep in the brain produces what they call an "informational lesion." By relaying a repetitious and therefore meaningless message, constant pulses overwhelm the erratic bursts of brain activity characteristic of disease.

"Periodic bursts in the brains of people with tremor -- which might follow a pattern such as 'pop-pop-pop, silence, pop-pop-pop, silence' -- propagate pathological information within brain circuits," said Warren Grill, the study's lead investigator and an associate professor of biomedical engineering. "If you replace that instead with a constant 'pop-pop-pop-pop-pop-pop,' you've erased that pathological information."

Grill said the high-frequency deep brain stimulation acts like a surgical lesion, another acceptable treatment for severe tremor disorders and epilepsies. But the electronic device has the advantage of being adjustable or reversible.

The researchers' report appears in a special June 2007 issue of the journal IEEE Transactions on Neural Systems and Rehabilitation Engineering, edited in part by Grill. The study was conducted by a team that included Alexis Kuncel, a doctoral student in biomedical engineering at Duke, and Scott Cooper, a neurologist at the Cleveland Clinic, with support from the National Institutes of Health.

The FDA approved the use of deep brain stimulation for Parkinson's disea se in 1997. The electrical implants are also an approved therapy for other movement disorders and are at various stages of testing for the treatment of epilepsy, depression, obsessive-compulsive disorder and pain, according to Grill.

The complexity of the brain -- in which nerves project in all directions and connect with one another to form multiple, looping networks -- makes studying how deep brain stimulation works a challenge, Grill said.

Grill's team created a mathematical model of a normally functioning brain cell. The researchers then gave the model neuron the pathological pattern of activity seen in people with tremors, assembled a group of these model cells and watched what would happen when the cells were electrically stimulated at various rates and intensities.

In addition to showing how the therapy works, their model of neurons in action also revealed that stimulation delivered at too slow a pace fails to keep bad information at bay. Indeed, slower pulses can actually add to problematic bursts, they showed.

The model's findings closely parallel the clinical responses of patients, who typically experience the greatest relief from symptoms when their devices are tuned by physicians to deliver rapid pulses, Grill said. Patients' symptoms can actually worsen when the devices are dialed to a slower setting.

The intensity of stimulation also plays an important role, the study suggests, by determining the number of brain cells affected by a particular series of pulses.

A better understanding of the processes underlying deep brain stimulation could enable physicians to better fine-tune electrical implants, Grill said. That could be particularly useful for zeroing in on effective settings for implants used to treat diseases, such as epilepsy, in which seizures occur only sporadically, as well as conditions, such as depression, in which symptoms can vary widely from day to day.

"In the case of t remor, physicians can alter the setting until they see the symptoms stop," Grill said. "You don't have to know how it's really working.

"In a condition like epilepsy, however, it's extremely unlikely that a person would have a seizure in the doctor's office," he said. "Therefore, it might take months of trial and error to find the optimal setting." Grill's new model promises to streamline the process.


'"/>

Source:Duke University


Related biology news :

1. Controversial drug shown to act on brain protein to cut alcohol use
2. Mouse brain cells rapidly recover after Alzheimers plaques are cleared
3. Mouse brain tumors mimic those in human genetic disorder
4. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
5. First atlas of key brain genes could speed research on cancer, neurological diseases
6. NYU study reveals how brains immune system fights viral encephalitis
7. Stem cells from brain transformed to produce insulin at Stanford
8. Birds brains reveal source of songs
9. Loves all in the brain: fMRI study shows strong, lateralized reward, not sex, drive
10. Revolutionary nanotechnology illuminates brain cells at work
11. A puzzle piece found in unraveling the wiring of the brain

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/15/2016)... , April 15, 2016 ... the,  "Global Gait Biometrics Market 2016-2020,"  report to ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait biometrics ... of 13.98% during the period 2016-2020. ... angles, which can be used to compute factors ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting Medicaid ... setting a new clinical standard in telehealth thanks to ... leveraging the higi platform, IMPOWER patients can routinely track ... and body mass index, and, when they opt in, ... convenient visit to a local retail location at no ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys ... founding CEO, Barrett Bready , M.D., who returned ... of the original technical leadership team, including Chief Technology ... of Product Development, Steve Nurnberg and Vice President of ... to the company. Dr. Bready served as ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
(Date:6/24/2016)... ... 2016 , ... While the majority of commercial spectrophotometers and fluorometers use the ... models are higher end machines that use the more unconventional z-dimension of 20mm. ... the bottom of the cuvette holder. , FireflySci has developed several Agilent flow ...
(Date:6/23/2016)... Mass. , June 23, 2016   ... development of novel compounds designed to target cancer ... napabucasin, has been granted Orphan Drug Designation from ... the treatment of gastric cancer, including gastroesophageal junction ... stemness inhibitor designed to inhibit cancer stemness pathways ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is ... has received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval ... Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods ...
Breaking Biology Technology: