Navigation Links
How bad is malaria anemia? It may depend on your genes

Cell and animal studies conducted jointly by scientists at Johns Hopkins, Yale and other institutions have uncovered at least one important contributor to the severe anemia that kills almost half of the 2 million people worldwide who die each year of malaria. The culprit is a protein cells make in response to inflammation called MIF, which appears to suppress red blood cell production in people whose red blood cells already are infected by malaria parasites.

The parasite that causes malaria - known as plasmodium - is carried through blood by mosquito bites, and in parts of the world where mosquitoes thrive, millions are infected, most of them by early childhood. Once in the bloodstream, plasmodium invades liver and red blood cells and makes more copies of itself. Eventually, as red cells break and free plasmodium to infect other cells, and as the body's immune system works to kill infected cells, the total number of red blood cells drops, causing anemia.

But not everyone infected with malaria develops severe, lethal anemia. And there are cases where patients who have been cured of infection still develop severe anemia.

This report provides the rationale for a simple, genetic test to sort out which children may be most susceptible to this lethal complication of malarial infection and to identify treatments targeted to them especially, the study's authors suggest.

"This is important because in places where malaria is endemic, drug treatment resources are scarce," says the study's primary author, Michael A. McDevitt, M.D., Ph.D., an assistant professor of medicine and hematology at the Johns Hopkins School of Medicine.

"There are many difficulties with blood transfusion safety and access in Africa, especially in rural areas where most of the malaria-related deaths occur," says McDevitt. "That led us to search for a better way to identify those most at risk and a better way to treat the disease," he says.

The study, published online April 24 in the Journal of Experimental Medicine, adds to a growing amount of evidence that an individual's unique genetic makeup can affect the prevalence and outcome of diseases, in this case the individual risk of malarial anemia.

A number of human proteins, including MIF (which stands for migration inhibitory factor), were long suspected to cause malarial anemia because they are known to reduce red blood cell counts as part of the body's normal response to such inflammatory conditions as rheumatoid arthritis or some cancers.

Using immature blood cell precursors grown in a dish, the research team showed that adding MIF to the cells decreases both the final number and maturity of red blood cells. The researchers believe this effect can lead to anemia.

When infected with plasmodium, mice genetically engineered to lack MIF experience less severe anemia and are more likely to survive. Without MIF around to prevent blood cells from maturing, the mice appear better able to maintain their oxygen carrying capacity and don't lose as much hemoglobin, the protein found in red blood cells responsible for binding to oxygen molecules.

"Demonstrating that MIF clearly contributes to severe anemia suggests new ideas for therapies that can block MIF in malaria patients," says the study's senior author, Richard Bucala, M.D., Ph.D., a professor of medicine at Yale University School of Medicine.

The research team also found different versions of "promoter" DNA sequences next to the MIF gene that control how much MIF protein a cell makes in response to infection. One version of the MIF promoter leads to less MIF protein made, while cells containing another version of the MIF promoter make much more MIF protein. Differences in the MIF promoter also have been linked to the severity of other inflammatory diseases.

The researchers continue to collaborate in an effort to develop drugs that might block MIF and treat severe anemia in malaria patients.


'"/>

Source:Johns Hopkins Medical Institutions


Related biology news :

1. Scientists reveal molecular secrets of the malaria parasite
2. Simple drug has the potential to save many lives threatened by malaria
3. Molecular models advance the fight against malaria
4. Reducing malarial transmission in Africa
5. Sickle cell and protection against malaria
6. Chemists synthesize molecule that helps body battle cancers, malaria
7. Gene expands malarias invasion options
8. University of Nevada, Reno research team discovers hormone that causes malaria mosquito to urinate
9. Measuring hidden parasites in falciparum malaria
10. Old drug, new tricks: Prospects for slashing the impact of malaria
11. Researchers discover how malaria parasite disperses from red blood cells
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/1/2016)... 2016 Favorable Government Initiatives Coupled ... Criminal Identification to Boost Global Biometrics System Market Through ... Research report, " Global Biometrics Market By Type, ... Opportunities, 2011 - 2021", the global biometrics market is ... account of growing security concerns across various end use ...
(Date:5/9/2016)... Elevay is currently known as ... for high net worth professionals seeking travel for work ... world, there is still no substitute for a face-to-face ... your deal with a firm handshake. This is why ... of citizenship via investment programs like those offered by ...
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 On ... session at 4,833.32, down 0.22%; the Dow Jones Industrial Average ... 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), Aralez ... Inc. (NASDAQ: BIND ). Learn more about these ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and technical consulting, provides a free webinar on Performing Quality Investigations: ... 2016 at 12pm CT at no charge. , Incomplete investigations are still a ...
(Date:6/23/2016)... 2016  Amgen (NASDAQ: AMGN ) today ... life sciences incubator to accelerate the development of ... space at QB3@953 was created to help high-potential life ... many early stage organizations - access to laboratory infrastructure. ... launched two "Amgen Golden Ticket" awards, providing each winner ...
(Date:6/22/2016)... , June 22, 2016 Cell Applications, ... allow them to produce up to one billion ... lot within one week. These high-quality, consistent stem ... preparing cells and spend more time doing meaningful, ... a proprietary, high-volume manufacturing process that produces affordable, ...
Breaking Biology Technology: