Navigation Links
How appetite-stimulating brain cells work overtime during fasting

During periods of fasting, brain cells responsible for stimulating the appetite make sure that you stay hungry. Now, a new study of mice reported in the January issue of the journal Cell Metabolism, published by Cell Press, reveals the complex series of molecular events that keep those neurons active.

The researchers revealed a link between active thyroid hormone in the brain and increases in an "uncoupling" protein (UCP2) that boosts the number of power-generating mitochondria in neurons that drive hunger. The increase in mitochondria, in turn, allows the brain's hunger center to remain active when periods of food scarcity result in a "negative energy balance," said Sabrina Diano of Yale University School of Medicine, who led the study.

Indeed, the researchers found, animals lacking either UCP2 or an enzyme that stimulates thyroid hormone's production ate less than normal after a period of food deprivation.

"This shows the key importance of UCP in the brain and its effect on neuronal activity," Diano said. "It's how neurons 'learn' that food is missing, and it keeps them ready to eat when food is introduced."

The mechanism involved is very similar to the one that regulates core body temperature in peripheral body tissues, Diano added.

Thyroid hormones are known to play major roles during development as well as in adulthood, the researchers said. In adults, the thyroid gland is essential to regulating metabolism. Previous studies had also established a key physiological role for the active thyroid hormone, triiodothyronine (T3), in the regulation of body temperature by heat-generating brown fat.

The molecular underpinning of heat production, or thermogenesis, in brown fat is the activation of mitochondrial uncoupling protein 1 (UCP1) by T3, the researchers said. The UCP1 activation, which is controlled by the sympathetic nervous system, also leads to an increase in the number of mitochondria.

The r ole of the related protein, UCP2, which is present at high levels in the hypothalamic arcuate nucleus--considered to be the key brain site that responds to changes in peripheral tissue metabolism--had remained less clear. However, scientists did know that that portion of the brain harbors thyroid hormone receptors and has the capacity for local production of T3.

Now, the researchers found that support cells in the hypothalamus producing an enzyme that catalyzes active thyroid hormone production are side by side with appetite-stimulating neurons that express UCP2. In mice that were fasted for 24 hours, the arcuate nucleus showed an increase in the "DII" enzyme's activity and local thyroid production, in parallel with increased UCP2 activity.

This fasting-induced, T3-mediated UCP2 activation resulted in mitochondrial proliferation in the neurons, an event that was critical for the brain cells' increased excitability and consequent rebound feeding by the animals following food deprivation.

"Our results indicate that this mechanism is critical in sustaining an increased firing rate in these [hunger-stimulating] cells so that appetite remains elevated during fasting," Diano's group concluded. "Overall, our study provides strong evidence for an interplay between local T3 production and UCP2 during fasting and reveals a central thermogenic-like mechanism in the regulation of food intake."

While it is as yet unproven, the rise in UCP2 in the brain likely also causes changes in temperature in the same way that UCP1 does in brown fat, Diano said.

"It's possible that heat may act like a neurotransmitter of a sort," Diano said. Neurotransmitters are chemical messengers that relay signals to and from neurons. "Changes in temperature could have a strong effect on brain function."

The findings emphasize the complexity of the feeding circuitry, which once "seemed so simple," wrote Charles Mobbs of Mount Sinai School of M edicine in an accompanying preview article. Researchers had thought that decreased levels of the fat-produced hormone leptin alone signaled the hypothalamus that fat levels have fallen, leading hypothalamic neurons to activate a program, including hunger, to preserve energy and restore fat levels, he said.

Now, "a series of studies, including those reported in this issue of Cell Metabolism by [Diano and colleagues] have elegantly demonstrated that hypothalamic responses to food deprivation involve at least three hormones, two cell types, and an unexpected interlocutor, uncoupling protein 2."
'"/>

Source:Cell Press


Related biology news :

1. Controversial drug shown to act on brain protein to cut alcohol use
2. Mouse brain cells rapidly recover after Alzheimers plaques are cleared
3. Mouse brain tumors mimic those in human genetic disorder
4. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
5. First atlas of key brain genes could speed research on cancer, neurological diseases
6. NYU study reveals how brains immune system fights viral encephalitis
7. Stem cells from brain transformed to produce insulin at Stanford
8. Birds brains reveal source of songs
9. Loves all in the brain: fMRI study shows strong, lateralized reward, not sex, drive
10. Revolutionary nanotechnology illuminates brain cells at work
11. A puzzle piece found in unraveling the wiring of the brain

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/5/2017)... LONDON , April 4, 2017 KEY ... is anticipated to expand at a CAGR of 25.76% ... neurodegenerative diseases is the primary factor for the growth ... full report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The ... of product, technology, application, and geography. The stem cell ...
(Date:3/30/2017)... -- On April 6-7, 2017, Sequencing.com will host the world,s ... at Microsoft,s headquarters in Redmond, Washington ... health and wellness apps that provide a unique, personalized ... is the first hackathon for personal genomics and the ... the genomics, tech and health industries are sending teams ...
(Date:3/29/2017)... CHICAGO , March 29, 2017  higi, the ... ecosystem in North America , today ... Partners and the acquisition of EveryMove. The new investment ... extensive set of tools to transform population health activities ... and lifestyle data. higi collects and secures ...
Breaking Biology News(10 mins):
(Date:5/26/2017)... ... May 25, 2017 , ... Studying ... behind each occurrence. Live cell imaging using fluorescence microscopy is the perfect approach ... automated fluorescence microscopy methods will be discussed, from small animal models and tissues ...
(Date:5/24/2017)... BELLINGHAM, Washington, and WASHINGTON, DC, USA (PRWEB) , ... May 23, ... ... powerful driver of the economy as well as an enabler of life-saving medical and ... society for optics and photonics . They joined others in the scientific community today ...
(Date:5/23/2017)... ... May 23, 2017 , ... ... cells for research and the development of cardiac regeneration therapies. The development ... numbers of cardiomyocytes (hPSC-CMs). Due to varying differentiation efficiencies, further enrichment of ...
(Date:5/23/2017)... ... May 23, 2017 , ... Energetiq Technology, ... announced a facility expansion to accommodate its rapid growth. , The renovations at ... and renovation of the existing areas. The expansion includes, a state-of-the-art engineering facility, ...
Breaking Biology Technology: