Navigation Links
'Hidden-hero' microbes in soil, water may help naturally clean toxic sites

Buried under 243 acres in an East Tennessee valley adjacent to the Oak Ridge National Laboratory's Y-12 National Security Complex, toxic waste from weapons manufacturing at the facility between 1951 and 1983 leaches into groundwater that extends in radioactive plumes for miles from the contaminated site.

But soon, Florida State University Associate Professor Joel Kostka and his FSU oceanography department team will help clean up the mess.

During the course of a forthcoming five-year study funded by the U.S. Department of Energy, FSU researchers will be testing a natural method called bioremediation -- the stimulation of naturally occurring microbes that Kostka calls "hidden heroes" -- to promote bacterial growth in the soil subsurface that scrub it of potentially deadly radioactive metal.

If bioremediation proves successful on the uranium, technetium, nitrate and other potentially lethal leftovers at the Oak Ridge site, the process should work to mitigate contamination at more than 7,000 other sites nationwide -- and do so more economically and effectively than most conventional methods.

"The stakes are high and the impact potentially huge," Kostka said. Together, those 7,000 U.S. sites encompass an estimated 1.7 trillion gallons of contaminated water -- that's about four times the nation's daily water consumption -- and about 40 million cubic meters of contaminated soil.

Kostka has a five-year, $1 million share of the total $15 million in U.S. DOE funding for the project, which includes research teams from FSU and multiple universities and national laboratories across the country.

Together, the partners will develop models to help predict the rate at which contamination levels drop when using natural methods such as bioremediation and artificial techniques such as chemical additions and pH adjustments. Subsurface changes are monitored using geophysical methods that send acoustic, electric and other signals i nto the ground.

Kostka's research team from FSU's nationally top 10-ranked oceanography department will lead the "subsurface microbiology" portion of the project.

"Radioactive metal contamination such as that found at the Oak Ridge Field Research Center (ORFRC) where we will be working is a huge global issue," Kostka said. "It affects not only the U.S. but in particular, also Eastern Europe, Canada and South America, and the costs of cleanup are projected in the billions if not trillions of dollars in the U.S. alone.

"As it now stands, bioremediation, which is potentially much cheaper than current technologies, has not been used much at all, but it should be," he said.

"Subsurface aquifers, where most of the radioactive contamination resides, are primary sources of groundwater used for drinking, and contaminated aquifers tend to be extreme environments where microorganisms dominate. These microbes are the 'hidden heroes' that do the work of bioremediation. Our new project will provide the basic science necessary to deploy bioremediation technologies at the scales necessary for them to be effective at U.S. DOE sites."

In addition, the ORFRC has funded Kostka's FSU lab to develop and maintain a genetic database of genes of organisms that are present in the Oak Ridge site's subsurface.

"With the genetic database and associated cutting-edge genomics techniques, my lab will determine and predict the functioning or metabolism of subsurface microbial groups that catalyze key chemical reactions for contaminant removal from groundwater," he said.

"In fact, my FSU group recently isolated a new 'wonderbug,' a metal-reducing bacteria we named Geobacter FRC-32," Kostka added. "The genome of this organism now has been sequenced, and we will use that genome sequence and those of other 'bugs' at Oak Ridge in developing our new bioremediation strategies for DOE sites."
'"/>

Source:Florida State University


Related biology news :

1. W.M. Keck Foundation funds study of friendly microbes
2. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
3. Harnessing microbes, one by one, to build a better nanoworld
4. Leprosy microbes lead scientists to immune discovery
5. Could microbes solve Russias chemical weapons conundrum?
6. Proteomics brings researchers closer to understanding microbes that produce acid mine drainage
7. Freeze-dried mats of microbes awaken in Antarctic streambed
8. Understanding the oceans microbes is key to the Earths future
9. Wisconsin scientists discover a master key to microbes pathogenic lifestyles
10. New method for identifying microbes
11. EGF receptor activation prevents microbes from going more than skin deep

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/23/2017)... and ITHACA, N.Y. , ... and Cornell University, a leader in dairy research, today ... bioinformatics designed to help reduce the chances that the ... the onset of this dairy project, Cornell University has ... for Sequencing the Food Supply Chain, a food safety ...
(Date:5/6/2017)... SINGAPORE , May 5, 2017 ... has just announced a new breakthrough in biometric ... that exploits quantum mechanical properties to perform ... new smart semiconductor material created by Ram Group ... across finance, entertainment, transportation, supply chains and security. ...
(Date:4/13/2017)... UBM,s Advanced Design and Manufacturing event in ... and evolving technology through its 3D Printing and Smart ... the expo portion of the event and feature a ... on trending topics within 3D printing and smart manufacturing. ... will take place June 13-15, 2017 at the Jacob K. ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... Tbilisi, Georgia (PRWEB) , ... October 11, 2017 , ... ... disaster, taking the lives of over 5.5 million people each year. Especially those living ... the greenovative startup Treepex - based in one of the most pollution-affected countries globally ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights ... (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced the ... NIH to develop RealSeq®-SC (Single Cell), expected to be ... small RNAs (including microRNAs) from single cells using NGS ... the need to accelerate development of approaches to analyze ... "New techniques for measuring levels of mRNAs ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer television series will ... American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With global population estimates ... of how to continue to feed a growing nation. At the same time, many ...
Breaking Biology Technology: