Navigation Links
Heparin prepared synthetically could replace animal-derived drug

Researchers at Rensselaer Polytechnic Institute and University of North Carolina at Chapel Hill have discovered an alternative way to produce heparin, a drug commonly used to stop or prevent blood from clotting. The findings could enable the current supply of the drug ?now extracted from animal tissue ?to be replaced or supplemented by the synthetic version. The new process also can be applied as a tool for drug discovery, according to the researchers.

Heparin is a complex carbohydrate used to stop or prevent blood from clotting during medical procedures and treatments such as kidney dialysis, heart bypass surgery, stent implantation, indwelling catheters, knee and hip replacements, and deep vein thrombosis. The annual worldwide sales of heparin are estimated at $3 billion.

"We have synthetically prepared heparin in quantities large enough for use in human medical treatments by engineering recently discovered heparin biosynthetic enzymes," says Robert Linhardt, the Ann and John H. Broadbent Jr. '59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer Polytechnic Institute. "These discoveries will enable us to effectively replace a variable raw material ?heparin derived from processed animal organs ?with a synthetic material ?synthetic heparin ?and have the same therapeutic result."

Research in Linhardt's group at the Center for Biotechnology and Interdisciplinary Studies at Rensselaer focuses on complex carbohydrates such as heparin. After determining the structure of these molecules, researchers study their biological activities to establish a structure-activity relationship that may reveal lead compounds for new drug development.

Researchers at MIT first prepared a synthetic heparin, but, in amounts of less than 1 microgram, it was insufficient to treat humans, says Linhardt. One human dose of heparin is approximately 100 milligrams.

Rensselaer and UNC-Chapel Hill researchers successfully sy nthesized hundreds of milligrams of heparin by developing a large-scale process involving engineered enzymes and co-factor recycling. The new, scaleable process can be applied to synthesize other heparin-based structures that regulate cell growth and may have applications in wound healing or cancer treatment, according to the researchers. The findings were reported Dec. 30, 2005, in the Journal of Biological Chemistry in a paper titled "Enzymatic redesigning of biological active heparan sulfate."

The process also can be applied in solid phase synthesis as a tool for screening lead compounds with heparin-like structures for drug discovery, according to the researchers. The findings were published Jan. 13, 2006, in Biochemical and Biophysical Research Communication in a paper titled "Enzymatic synthesis of heparin related polysaccharides on sensor chips: Rapid screening of heparin-protein interactions."

Linhardt collaborated on the interdisciplinary project with Jian Liu, assistant professor of medicinal chemistry at University of North Carolina at Chapel Hill. Graduate and post-doctoral students involved in the work include: Jinghua Chen (UNC-Chapel Hill), Eva Munoz (Rensselaer), Fikri Avci (Rensselaer), Ding Xu (UNC-Chapel Hill), Melissa Kemp (Rensselaer), and Miao Chen (UNC-Chapel Hill). The work was supported by the National Institutes of Health and the American Heart Association. Rensselaer and UNC-Chapel Hill have jointly filed a provisional patent on the process.

Linhardt said additional research will seek to scale the process another million-fold to make it commercially viable.


'"/>

Source:Rensselaer Polytechnic Institute


Related biology news :

1. Protein discovery could unlock the secret to better TB treatment
2. Tiny particles could solve billion-dollar problem
3. First atlas of key brain genes could speed research on cancer, neurological diseases
4. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
5. A comprehensive response to HIV could prevent 10 million AIDS deaths in Africa by 2020
6. How the environment could be damaging mens reproductive health
7. Dead zone area in Gulf could be increasing, researchers say
8. Growth in biomass could put US on road to energy independence
9. Nano-bumps could help repair clogged blood vessels
10. Researchers develop assay that could be applied to drug screening
11. Currents could disrupt ocean food chain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/24/2017)... , April 24, 2017 Janice ... partner with  Identity Strategy Partners, LLP (IdSP) , ... or without President Trump,s March 6, 2017 ... Entry , refugee vetting can be instilled with greater ... (Right now, all refugee applications are suspended by ...
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" ... its 2016 Annual Report on Form 10-K on Thursday April 13, ... ... the Investor Relations section of the Company,s website at http://www.nxt-id.com ... http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... PALM BEACH GARDENS, Fla. , April 11, ... biometric identity management and secure authentication solutions, today ... million contract by Intelligence Advanced Research Projects Activity ... technologies for IARPA,s Thor program. "Innovation ... the onset and IARPA,s Thor program will allow ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... San Diego-based team building ... corporate rebranding initiative announced today. The bold new look is part of a ... company moves into a significant growth period. , It will also expand its service ...
(Date:10/10/2017)... Calif. , Oct. 10, 2017 SomaGenics ... from the NIH to develop RealSeq®-SC (Single Cell), expected ... for profiling small RNAs (including microRNAs) from single cells ... Program highlights the need to accelerate development of approaches ... "New techniques for measuring levels ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board meeting in North ... in Harvard University’s Departments of Physics and Astronomy, has been selected for membership in ... winning team for the 2015 Breakthrough Prize in Fundamental physics for the discovery of ...
(Date:10/7/2017)... Oct. 6, 2017  The 2017 Nobel Prize ... scientists, Jacques Dubochet, Joachim Frank and ... cryo-electron microscopy (cryo-EM) have helped to ... structural biology community. The winners worked with systems ... routinely produce highly resolved, three-dimensional images of protein ...
Breaking Biology Technology: