Navigation Links
Heparin prepared synthetically could replace animal-derived drug

Researchers at Rensselaer Polytechnic Institute and University of North Carolina at Chapel Hill have discovered an alternative way to produce heparin, a drug commonly used to stop or prevent blood from clotting. The findings could enable the current supply of the drug ?now extracted from animal tissue ?to be replaced or supplemented by the synthetic version. The new process also can be applied as a tool for drug discovery, according to the researchers.

Heparin is a complex carbohydrate used to stop or prevent blood from clotting during medical procedures and treatments such as kidney dialysis, heart bypass surgery, stent implantation, indwelling catheters, knee and hip replacements, and deep vein thrombosis. The annual worldwide sales of heparin are estimated at $3 billion.

"We have synthetically prepared heparin in quantities large enough for use in human medical treatments by engineering recently discovered heparin biosynthetic enzymes," says Robert Linhardt, the Ann and John H. Broadbent Jr. '59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer Polytechnic Institute. "These discoveries will enable us to effectively replace a variable raw material ?heparin derived from processed animal organs ?with a synthetic material ?synthetic heparin ?and have the same therapeutic result."

Research in Linhardt's group at the Center for Biotechnology and Interdisciplinary Studies at Rensselaer focuses on complex carbohydrates such as heparin. After determining the structure of these molecules, researchers study their biological activities to establish a structure-activity relationship that may reveal lead compounds for new drug development.

Researchers at MIT first prepared a synthetic heparin, but, in amounts of less than 1 microgram, it was insufficient to treat humans, says Linhardt. One human dose of heparin is approximately 100 milligrams.

Rensselaer and UNC-Chapel Hill researchers successfully sy nthesized hundreds of milligrams of heparin by developing a large-scale process involving engineered enzymes and co-factor recycling. The new, scaleable process can be applied to synthesize other heparin-based structures that regulate cell growth and may have applications in wound healing or cancer treatment, according to the researchers. The findings were reported Dec. 30, 2005, in the Journal of Biological Chemistry in a paper titled "Enzymatic redesigning of biological active heparan sulfate."

The process also can be applied in solid phase synthesis as a tool for screening lead compounds with heparin-like structures for drug discovery, according to the researchers. The findings were published Jan. 13, 2006, in Biochemical and Biophysical Research Communication in a paper titled "Enzymatic synthesis of heparin related polysaccharides on sensor chips: Rapid screening of heparin-protein interactions."

Linhardt collaborated on the interdisciplinary project with Jian Liu, assistant professor of medicinal chemistry at University of North Carolina at Chapel Hill. Graduate and post-doctoral students involved in the work include: Jinghua Chen (UNC-Chapel Hill), Eva Munoz (Rensselaer), Fikri Avci (Rensselaer), Ding Xu (UNC-Chapel Hill), Melissa Kemp (Rensselaer), and Miao Chen (UNC-Chapel Hill). The work was supported by the National Institutes of Health and the American Heart Association. Rensselaer and UNC-Chapel Hill have jointly filed a provisional patent on the process.

Linhardt said additional research will seek to scale the process another million-fold to make it commercially viable.


'"/>

Source:Rensselaer Polytechnic Institute


Related biology news :

1. Protein discovery could unlock the secret to better TB treatment
2. Tiny particles could solve billion-dollar problem
3. First atlas of key brain genes could speed research on cancer, neurological diseases
4. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
5. A comprehensive response to HIV could prevent 10 million AIDS deaths in Africa by 2020
6. How the environment could be damaging mens reproductive health
7. Dead zone area in Gulf could be increasing, researchers say
8. Growth in biomass could put US on road to energy independence
9. Nano-bumps could help repair clogged blood vessels
10. Researchers develop assay that could be applied to drug screening
11. Currents could disrupt ocean food chain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/5/2017)... 5, 2017  The Allen Institute for Cell Science ... a one-of-a-kind portal and dynamic digital window into the ... the first application of deep learning to create predictive ... lines and a growing suite of powerful tools. The ... and future publicly available resources created and shared by ...
(Date:4/3/2017)... 3, 2017  Data captured by IsoCode, ... detected a statistically significant association between the ... treatment and objective response of cancer patients ... predict whether cancer patients will respond to ... well as to improve both pre-infusion potency testing ...
(Date:3/29/2017)... the health IT company that operates the largest health ... today announced a Series B investment from BlueCross BlueShield ... investment and acquisition accelerates higi,s strategy to create the ... activities through the collection and workflow integration of ambient ... secures data today on behalf of over 36 million ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... LINDA, CA (PRWEB) , ... October 11, 2017 ... ... to upregulate any gene in its endogenous context, enabling overexpression experiments and avoiding ... (CRISPRa) system with small RNA guides is transformative for performing systematic gain-of-function studies. ...
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017 /PRNewswire/ ... London (ICR) and University of ... tool to risk-stratify patients with multiple myeloma (MM), in a ... . The University of Leeds is ... Myeloma UK, and ICR will perform the testing services to ...
(Date:10/10/2017)... Los Angeles, CA (PRWEB) , ... ... ... Pharmaceuticals, Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) ... all uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed ...
(Date:10/10/2017)... ... October 10, 2017 , ... USDM Life Sciences , ... life sciences and healthcare industries, announces a presentation by Subbu Viswanathan and Jennifer ... “Automating GxP Validation for Agile Cloud Platforms,” will present a revolutionary approach to ...
Breaking Biology Technology: