Navigation Links
Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University

Results reported at American Chemical Society meetingA chemical catalyst developed at Carnegie Mellon University completely destroys dangerous nitrophenols in laboratory tests, according to Arani Chanda, a doctoral student who is presenting his findings on Sunday, Aug. 28, at the 230th meeting of the American Chemical Society (ACS) in Washington, D.C. (Division of Industrial and Engineering Chemistry, Convention Center Hall A).

"We found an efficient, rapid and environmentally friendly means of completely destroying these compounds," said Chanda, who works in the laboratory of Terrence Collins, the Thomas Lord Professor of Chemistry and director of the Institute for Green Oxidation Chemistry at the Mellon College of Science (MCS) at Carnegie Mellon.

Nitrophenols are man-made pollutants that mostly originate from wastewater discharges from the dye, pesticide and ammunition industries as well as from various chemical-manufacturing plants. They are also found in diesel exhaust particles. Thousands of tons of these agents are produced yearly by countries around the world. Registered as priority pollutants by the EPA, they are toxic to aquatic life. They produce immediate toxic effects to the nervous system, and some reports have implicated them as possible endocrine disruptors. Many of these compounds cannot be destroyed by existing means.

The catalyst, one of a family of catalysts called Fe-TAMLs (TAML stands for tetra-amido macrocyclic ligand), works with hydrogen peroxide. Its "green" design is based on elements used naturally in biochemistry. Fe-TAMLs were discovered by Collins, whose group has developed an extensive suite of these catalysts to provide clean, safe alternatives to existing industrial practices, as well as ways to remediate other pressing problems that currently lack solutions.

"Fe-TAMLs are much easier to use in destroying nitrophenols because they work at ambient temperatures and neutral pH," said Collins. "Existing detoxification methods are inefficient and work only under acidic conductions. Our method can be used over a much broader pH range, including wastewater pH conditions."

Fe-TAMLs already have shown promise in killing a simulant of a biological warfare agent (anthrax), reducing fuel pollutants, treating pulp and paper processing byproducts, and detoxifying pesticides. A major goal is to develop Fe-TAMLs as a safe, cost-effective means of global water decontamination.

Collins and other members of his laboratory are presenting additional findings about Fe-TAMLs during these sessions at the 230th ACS meeting:

"TAML green oxidation catalysis for safely destroying pollutants and microbes in water," oral presentation by Terrence Collins, INOR 265, Strategies and Molecular Mechanisms of Contaminant Degradation Chemistry, 2 p.m. Monday, Aug. 29, Convention Center 147B;

"Micellar regulation of the activity of Fe-TAML activators of peroxides in aqueous solutions," poster presentation by Deboshri Banerjee, I&EC 11, 8 p.m. Sunday, Aug. 28, Convention Center, Hall A.


Source:Carnegie Mellon University

Related biology news :

1. Green diesel: New process makes liquid transportation fuel from plants
2. FDA: Highly Unlikely Green Tea Lowers Cancer Risk
3. Microbes under Greenland Ice may be preview of what scientists find under Mars surface
4. Green tea and the Asian Paradox
5. GreeneChip -- New diagnostic tool that rapidly and accurately identifies multiple pathogens
6. BC catalyst discovery promises faster, cheaper drug production
7. Radiation-armed robot rapidly destroys human lung tumors
8. Molecule that destroys bone also protects it, new research shows
9. Scientists discuss improved biopesticides for locust control in West Africa
10. Biotech cotton provides same yield with fewer pesticides
11. Fake pesticides threaten food safety
Post Your Comments:

(Date:6/9/2016)... an innovation leader in attendance control systems is proud to announce the introduction of ... make sure the right employees are actually signing in, and to even control the ... ... ... ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. ... a business relationship that includes integrating Syngrafii,s patented ... branch project. This collaboration will result in greater ... the credit union, while maintaining existing document workflow ... ...
(Date:6/2/2016)... June 2, 2016 The Department of ... awarded the 44 million US Dollar project, for the ... Plates including Personalization, Enrolment, and IT Infrastructure , ... the production and implementation of Identity Management Solutions. Numerous renowned ... Decatur was selected for the most ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... Hill, N.C. (PRWEB) , ... June 27, 2016 ... ... U.S. commercial operations for Amgen, will join the faculty of the University ... serve as adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial ... Cary 5000 and the 6000i models are higher end machines that use the more ... the spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... -- The Biodesign Challenge (BDC), a university competition that asks ... systems and biotechnology, announced its winning teams at the ... York City . The teams, chosen ... MoMA,s Celeste Bartos Theater during the daylong summit. Keynote ... of architecture and design, and Suzanne Lee , ...
Breaking Biology Technology: