Navigation Links
Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University

Results reported at American Chemical Society meetingA chemical catalyst developed at Carnegie Mellon University completely destroys dangerous nitrophenols in laboratory tests, according to Arani Chanda, a doctoral student who is presenting his findings on Sunday, Aug. 28, at the 230th meeting of the American Chemical Society (ACS) in Washington, D.C. (Division of Industrial and Engineering Chemistry, Convention Center Hall A).

"We found an efficient, rapid and environmentally friendly means of completely destroying these compounds," said Chanda, who works in the laboratory of Terrence Collins, the Thomas Lord Professor of Chemistry and director of the Institute for Green Oxidation Chemistry at the Mellon College of Science (MCS) at Carnegie Mellon.

Nitrophenols are man-made pollutants that mostly originate from wastewater discharges from the dye, pesticide and ammunition industries as well as from various chemical-manufacturing plants. They are also found in diesel exhaust particles. Thousands of tons of these agents are produced yearly by countries around the world. Registered as priority pollutants by the EPA, they are toxic to aquatic life. They produce immediate toxic effects to the nervous system, and some reports have implicated them as possible endocrine disruptors. Many of these compounds cannot be destroyed by existing means.

The catalyst, one of a family of catalysts called Fe-TAMLs (TAML stands for tetra-amido macrocyclic ligand), works with hydrogen peroxide. Its "green" design is based on elements used naturally in biochemistry. Fe-TAMLs were discovered by Collins, whose group has developed an extensive suite of these catalysts to provide clean, safe alternatives to existing industrial practices, as well as ways to remediate other pressing problems that currently lack solutions.

"Fe-TAMLs are much easier to use in destroying nitrophenols because they work at ambient temperatures and neutral pH," said Collins. "Existing detoxification methods are inefficient and work only under acidic conductions. Our method can be used over a much broader pH range, including wastewater pH conditions."

Fe-TAMLs already have shown promise in killing a simulant of a biological warfare agent (anthrax), reducing fuel pollutants, treating pulp and paper processing byproducts, and detoxifying pesticides. A major goal is to develop Fe-TAMLs as a safe, cost-effective means of global water decontamination.

Collins and other members of his laboratory are presenting additional findings about Fe-TAMLs during these sessions at the 230th ACS meeting:

"TAML green oxidation catalysis for safely destroying pollutants and microbes in water," oral presentation by Terrence Collins, INOR 265, Strategies and Molecular Mechanisms of Contaminant Degradation Chemistry, 2 p.m. Monday, Aug. 29, Convention Center 147B;

"Micellar regulation of the activity of Fe-TAML activators of peroxides in aqueous solutions," poster presentation by Deboshri Banerjee, I&EC 11, 8 p.m. Sunday, Aug. 28, Convention Center, Hall A.


'"/>

Source:Carnegie Mellon University


Related biology news :

1. Green diesel: New process makes liquid transportation fuel from plants
2. FDA: Highly Unlikely Green Tea Lowers Cancer Risk
3. Microbes under Greenland Ice may be preview of what scientists find under Mars surface
4. Green tea and the Asian Paradox
5. GreeneChip -- New diagnostic tool that rapidly and accurately identifies multiple pathogens
6. BC catalyst discovery promises faster, cheaper drug production
7. Radiation-armed robot rapidly destroys human lung tumors
8. Molecule that destroys bone also protects it, new research shows
9. Scientists discuss improved biopesticides for locust control in West Africa
10. Biotech cotton provides same yield with fewer pesticides
11. Fake pesticides threaten food safety
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/3/2016)... Lithuania , May 3, 2016  Neurotechnology, ... released the MegaMatcher Automated Biometric Identification System ... of large-scale multi-biometric projects. MegaMatcher ABIS can process ... accuracy using any combination of fingerprint, face or ... MegaMatcher SDK and MegaMatcher Accelerator ...
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... CAMBRIDGE, Mass. , June 23, 2016 /PRNewswire/ ... the development of novel compounds designed to target ... compound, napabucasin, has been granted Orphan Drug Designation ... in the treatment of gastric cancer, including gastroesophageal ... cancer stemness inhibitor designed to inhibit cancer stemness ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm ... Mold) microbial test has received AOAC Research Institute approval 061601. , “This is ... last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. “The ...
(Date:6/23/2016)... ... 23, 2016 , ... Supplyframe, the Industry Network for electronics ... Lab . Located in Pasadena, Calif., the Design Lab’s mission is to bring ... designed, built and brought to market. , The Design Lab is Supplyframe’s physical ...
(Date:6/23/2016)... 23, 2016  Blueprint Bio, a company dedicated to ... medical community, has closed its Series A funding round, ... "We have received a commitment from Forentis ... need to meet our current goals," stated Matthew ... runway to complete validation on the current projects in ...
Breaking Biology Technology: