Navigation Links
Giant deep-sea tubeworm's meal ticket comes in as a skin infection

Giant tubeworms found near hydrothermal ventsmore than a mile below the ocean surface donot bother to eat: lacking mouth and stomach,they stand rooted to one spot. Fornourishment, they rely completely onsymbiotic bacteria that live within theirbodies to metabolize the sulphurous volcanicsoup in which they both thrive.

But the microscopic larvae of these giantsare born bacteria-free, with a completedigestive system. Juveniles swim, hunt, andeat before permanently settling down andtaking up with their microbial partners. Nowthe idea that the larvae acquire theirsymbionts by eating them has beenoverturned. By collecting the giant worms'tiny spawn from traps laid on the oceanfloor, oceanographers have shown that thesulfur-eating bacteria infect the larvaethrough their skin.

Andrea Nussbaumer and Monika Bright of theUniversity of Vienna, and Charles Fisher,professor of biology at Penn State, reporttheir findings this week in the Britishjournal Nature.

Previous groups had shown that, after a larvaquits swimming and attaches itself to thebottom of the ocean near a volcanic vent, itsmouth disappears and its stomach shrinksaway, even as it grows a specialized organcalled the trophosome that houses thesymbiotic bacteria it collects. "It is anabsolutely obligate symbiosis for the worm,"Fisher explains. "If the larvae do not getthe right symbiont, they die."

The prevailing hypothesis was that theappropriate bacteria were gathered into thestomach during feeding, somehow escapeddigestion, and by remaining in the stomachcaused it to undergo metamorphosis into thetrophosome.

But those conclusions were based on a verysmall set of observations, due to the extremedifficulty of obtaining the tubeworm's larvaland juvenile stages. The only way to collectthese delicate organisms is directly from theocean floor, at 2500 meters depth, in thedeep sea vehicle Alvin. Bright invented"tubeworm artificial settlement cubes," or"baby traps" as the team calls t hem, tocollect young, just-settled larvae andjuveniles. They left the traps at the bottomnear an active hydrothermal vent and returnedthe next season to collect them, bring themback to land-based laboratories, and analyzethem carefully using molecular techniques andfluorescence- and electron microscopy.

By a painstaking reconstruction of electronmicrographs of thin slices of larvae andjuvenile worms, the team showed that thesymbionts do not enter through the mouth, butthrough the skin, in a process akin toinfection by pathogenic bacteria. Thesebacterial partners then crawl inward, throughvarious larval tissues, not to the stomachbut to an adjacent, "mesodermal" tissue. Upontheir arrival, the bacteria appear to inducethe immature mesodermal tissue todifferentiate and form the trophosome, wherethey proliferate and provide sustenance tothe growing worm indefinitely. In return thebacteria get a safe habitat and a reliablesource of food.

"The symbiont, and only the symbiont, iscapable of invading the skin of the tubewormlarvae. It migrates through several layers oftissue towards the interior of the host, andinto the future trophosome," Brightexplains. "Once the trophosome isestablished, infection ceases, and no furtherinfection appears to be possible at laterstages."

The researchers found that after thetrophosome is established, further infectionappears to be prevented, in part by a wave ofprogrammed cell death in tissues wherestraggling bacteria remain.

"Biologists are realizing that symbiosis isnot an oddity in nature, but rather thenorm," Fisher says. "Most -- if not all --animals and plants exist in symbiosis withsome forms of microbes. We currentlyunderstand the early stages of symbiontacquisition for only a very few of themultitudes of symbioses. Since symbiosis isso widespread, understanding the mechanismsof symbiont acquisition is a first orderquestion for modern biologists."

"In this tubeworm," Bright adds, "thesymbiont ac quisition process resembles theinfection processes of pathogenic bacteria.""It may be," Fisher says, "that understandingthe early stages of symbiotic interactionswill help us to understand the early stagesof host-pathogen interactions, andvice-versa."


'"/>

Source:Penn State


Related biology news :

1. A giant among minnows: Giant danio can keep growing
2. Giant insects might reign if only there was more oxygen in the air
3. Climatologists discover deep-sea secret
4. Sinkers provide missing piece in deep-sea puzzle
5. Some like it hot: Worms at deep-sea vents favor a fiery 45-55°C
6. Drug discovery team to explore newly discovered deep-sea reefs
7. Extraordinary life found around deep-sea gas seeps
8. Ocean seep mollusks may share evolutionary history with other deep-sea creatures
9. Long-lived deep-sea fishes imperiled by technology, overfishing
10. Study warns deep-sea mining may pose serious threat to fragile marine ecosystems
11. Growth in the sea comes down to a struggle for iron
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:8/21/2019)... ... August 20, 2019 , ... Cutting Edge ... for the spine, today announced the 510(K) clearance of its novel SI joint ... is proven to improve osseointegration through superior hydrophilicity and optimized surface chemistry, as ...
(Date:8/19/2019)... ... August 19, 2019 , ... Since ... use of ultra-thin two dimensional slices which are placed on microscope slides, stained ... complex tissues and complicated features such as vasculature and thus researchers in the ...
(Date:8/15/2019)... ... 2019 , ... Serialization deadlines in the US and European ... aggregation becomes fully applied in the United States in 2023, pharmaceutical companies are ... now, most regulations?including the Drug Supply Chain Security Act (DSCSA)?have required minimal system ...
Breaking Biology News(10 mins):
(Date:8/4/2019)... ... August 02, 2019 , ... Cirtec Medical Corporation, a strategic outsourcing partner for ... has begun construction on a 30,000 sq. ft. manufacturing facility in the Coyol ... , The facility, which is expected to be fully operational by the end of ...
(Date:7/19/2019)... ... July 18, 2019 , ... World renowned two-time Everest summiter ... with California-based charity Coalition Duchenne for its 9th Annual Expedition Mt. Kinabalu in ... funding for Duchenne muscular dystrophy and was founded by Sabahan Catherine Jayasuriya. ...
(Date:7/9/2019)... ... July 08, 2019 , ... Today, at the ... National Corn Growers Association (NCGA) announced the winners of the Consider Corn ... product or process using field corn to produce biobased materials. , “Corn is a ...
(Date:6/18/2019)... ... ... Personalized Stem Cells, Inc (“PSC”), a human adipose-derived stem cell ... of a person’s own adipose-derived stem cells to treat their osteoarthritis. The first clinical ... IND is the first of several planned clinical trials which will enable qualified PSC-enrolled ...
Breaking Biology Technology: